Challenges to Manage Blood Pressure in ESRD and Heart Failure Patients

Shweta Bansal, MD, FASN
Associate Professor of Medicine
UT Health San Antonio
2nd Annual Cardiorenal Connections Meeting, April 28, 2017

Case Presentation

- 65 year old male
 - Diabetes with retinopathy and neuropathy
 - Ischemic cardiomyopathy with EF

Pre-HD
- Inter-dialytic weight gain: 3.5 kg
- Sitting BP: 180/96 mmHg
- Standing: 140/80 mmHg
- JVD 10 cmH2O
- Lungs: no rales
- CVS: Regular, normal sounds, 1+ b/l peripheral edema

Intra-dialysis
- 30 min: UF = 500 cc
- 60 min: UF = 1000 cc with headache

Medications
- Carvedilol 12.5 mg bid
- Losartan 50 mg daily
- Isosorbide dinitrate
- Aspirin, statin
- Warfarin

Action Plan
- ↓ both BB and ARB
- Reemphasized to reduce IDWG
- ↓ dialysate temperature to 36C
- Increased dialysis time
- Started Midodrin 5 mg at 0-30 min into dialysis

Cardiology/PCP clinic
- Sitting BP: 150/90 mmHg
- Medication list: minimal dose of BB and ARB, and !! Midodrin
- Increase in BB or ARB or addition of 4th med

Challenges in BP Management
- Hypertension
 - Pre-HD
 - Interdialytic
- Hypotension
 - On dialysis
- Orthostatic hypotension
 - Worse post-HD
 - Inter-dialytic

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
BP Pattern In A Hemodialysis Patient Over A Week

BP Pattern in A Peritoneal Dialysis Patient Over Days

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Pathogenesis: **HYPERTENSION**

Volume Overload
- Expanded extracellular fluid volume
- Increased sympathetic activity
- Increased renin-angiotensin system activity

Failure to suppress vasoconstrictor system
- ↓ NO production by endothelium
- ↑ Asymmetric Dimethyl Arginine (ADMA)

Impaired vasodilatation
- Reversing of hypoxia induced vasodilatation
- Increased viscosity
- Activation of neurohormones

Erythropoietin
- ↓ Entry of calcium into vessel smooth muscle cells

Secondary Hyperparathyroidism
- ↑ Entry of calcium into vessel smooth muscle cells

Diagnosis of Hypertension

- **Ideal:** Ambulatory or Home BP monitoring
- **Next best is Average of pre-HD, post-HD, and intra-dialytic BP**
- **Hypertension = SBP>130/80**

Management of Hypertension

• Achieving euvolemia
 – Dietary sodium restriction
 – Challenge dry weight: may not have visible edema till 3-4 lt ECF excess
 • Increase ultrafiltration
 – Increase time
 – Addition of sessions
 • Lower sodium dialysate

• Achieving euvolemia
• Achieving euvolemia
• Assessment of dry weight
 – Crit-line
 – Bio-impedence analysis
 – needs further refinement before being used in the clinic

Pharmacological Interventions for Hypertension

• Beta blockers are the first choice
 – RCT: mortality benefit
 – Observation studies reporting decreased sudden death
• ACEI and CCB
 – Reduced CVD
• Spironolactone
 – Reduced CVD and all-cause mortality

Cice et al. (J Am Coll Cardiol 2003;41:1438–44)
Hypotension In Dialysis Patients

- **Acute (episodic) hypotension**: Sudden drop in SBP
 - To < 90 mmHg or
 - Change > 20mmHg with accompanying clinical symptoms
 - Intra-dialytic sessions
- **Recurrent**: Minimum 50% of dialysis sessions
- **Chronic**: Persistent SBP <90–100 mmHg
- **Orthostatic hypotension**: >20 mmHg drop on standing
- **Prevalence**
 - Acute: 15-30% in ESRD population
 - >50% in diabetic and elderly
 - Chronic: 3-5% patients

Pathogenesis of Hypotension in Dialysis Patients

- **Aggressive Ultrafiltration**
 - Reduction in intravascular volume
 - Refilling from the interstitium/sometimes ICF
 - Increased cardiac output
 - Increased SVR X
 - Normal heart and normal baro-autonomic system/baro-reflexes X

\[\text{BP} = \text{CO} \times \text{SVR} \]
Normal Autonomic System

Decrease in Intra-arterial Volume
- Venous pooling on standing
- Removal through dialysis

Stimulation of Baroreceptors

↑ Sympathetic Discharge

Increase CO
- ↑ HR
- ↑ Contractility

Maintain the Blood Pressure

True hypovolemia: these responses not enough → hypotension with tachycardia

Autonomic Failure: not much responses → hypotension with no change in heart rate

Other Causes for Failure to Compensate for Vascular Underfilling

- Severe cardiovascular disease
 - Systolic heart failure
 - Diastolic dysfunction – unable to raise stroke volume
 - Right heart failure causing impaired left heart filling
 - Pericardial effusion
- Impaired Systemic vascular resistance
 - Liver disease
 - Calcified stiff blood vessels
 - Impaired vasopressin response
- Autonomic dysfunction
 - Diabetes
 - Uremia
 - Elderly with poor baroreceptor sensitivity
Infrequent Causes of Hypotension

- **Endocrine**: more associated with chronic
 - Hypothyroidism
 - Adrenal insufficiency
- **Dialysis related factors**
 - Low Na or Ca or high Mg dialysate
 - Non-biocompatible membrane

Management of Hypotension

- **Avoid Aggressive Ultrafiltration**
 - Decrease inter dialytic weight gain
 - Dietary salt restriction
 - DO NOT CONCENTRATE ON FLUID RESTRICTION
 - Decrease UF rate
 - Increase dialysis time
 - Additional dialysis sessions
Management of Hypotension (contd.)

- **Cardiac work up:** ECHO, Cards consult
 - **Cardiac Intervention**
 - Ischemic: revascularization
 - Valvular disease: surgical or percutaneous repair
 - Remodeling: Beta-blockers and Angiotensin blockers
 - Removal of excess volume

 - Liver
 - Autonomic Failure
 - Cardiac Intervention

 - Increase systemic vascular resistance
 - Cooling of dialysate
 - α-1 receptor agonist like midodrine

Autonomic Failure in Dialysis Patients

- **Etiology**
 - Aging
 - Diabetes
 - Uremia

- **Pathogenesis**
 - Autonomic neuropathy - small fiber damage
 - Both sympathetic and parasympathetic
 - Decrease neuronal storage of adrenaline
 - Reduced baroreceptor sensitivity

- **Prevalence**
 - 50% of maintenance dialysis patients

Savica et al. Am J of Kidney Dis 2001: 38, No 4, Suppl 1 (October); pp S118-S121
Autonomic Insufficiency

Autonomic Function Tests

<table>
<thead>
<tr>
<th>Group (n)</th>
<th>Amyl Nitrite</th>
<th>Valsalva Maneuver (Release phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ MAP (mmHg)</td>
<td>Δ HR (bpm)</td>
</tr>
<tr>
<td>Normal (6)</td>
<td>-44</td>
<td>43</td>
</tr>
<tr>
<td>Uremia 1 (2)</td>
<td>-45</td>
<td>47</td>
</tr>
<tr>
<td>Uremia 2 (6)</td>
<td>-51</td>
<td>6</td>
</tr>
<tr>
<td>Heart failure (6)</td>
<td>-17</td>
<td>4</td>
</tr>
</tbody>
</table>

Changes during hemodialysis

<table>
<thead>
<tr>
<th>Group</th>
<th>Δ MAP (mmHg)</th>
<th>Δ HR</th>
<th>Δ SVR</th>
<th>Blood Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uremia 1 (2)</td>
<td>-34</td>
<td>+11</td>
<td>+2.1</td>
<td>-0.4</td>
</tr>
<tr>
<td>Uremia 2 (6)</td>
<td>-69</td>
<td>-3</td>
<td>-14.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>p value</td>
<td><0.01</td>
<td><0.01</td>
<td><0.001</td>
<td>ns</td>
</tr>
</tbody>
</table>

Kersh et al. NEJM 1974:3;650

Hypotension due to Autonomic Failure in Hemo Vs. Peritoneal Dialysis Patients

Hemodialysis

- During dialysis
- Immediate post dialysis on standing
- Less during Inter-dialytic time
 - slowly rising plasma volume
 - collection of uremic toxins

Peritoneal Dialysis

More in patients with co-existent heart failure and autonomic insufficiency
Effect of α-1-adrenergic Agonist During Hemodialysis

- **Midodrin**
 - Completely and rapidly absorbed
 - Peak level in 40 min
 - Elimination T1/2 – 30 min

- **De-glymidodrin**
 - Peak level in 60-90 min
 - Elimination t1/2 – 3 hours

- **In ESRD**: 10 hours
 - Dialysis removes efficiently

- **Action**
 - Arteriolar constriction: ↑SVR
 - Venoconstriction: ↑ venous return and ↑cardiac output

Concerning Effects of Midodrine

- **Cardiogenic hypotension**
 - Increase afterload and pre-load
- **Supine hypertension**
- **Persistent Hypertension**
 - If don’t achieve euvolemia
- **Peripheral vascular disease**
 - Worsening ischemia
- **Urinary retention**

Cruz et al. American Journal of Kidney Diseases 1997: 30(6);772-779
Midodrine in Patients with Heart Failure and Dialysis Associated Hypotension

Better volume status
Resolution of symptoms
Less nurses intervention

Fluid Overload Independently Associated with Worse Outcome

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Case Presentation

• 65 year old male
• Diabetes with retinopathy and neuropathy
• Ischemic cardiomyopathy with EF 30%
• Previous smoker, left BKA
• HTN and ESRD –
• Initiated hemodialysis 2 months ago mainly for volume overload symptoms

Pre-HD
• Inter-dialytic weight gain: 3.5 kg
• Sitting BP: 180/96 mmHg
• Standing: 140/80 mmHg
• JVD 10 cmH20
• Lungs: no rales
• CVS: Regular, normal sounds, 1+ b/l peripheral edema

Intra-dialysis
• 30 min: 120/86 mmHg, UF = 500 cc
• 60 min: 96/70 mmHg with headache, UF = 1000 cc

Medications
• Carvedilol 12.5 mg bid
• Losartan 50 mg daily
• Isosorbide dinitrate
• Aspirin, statin
• Warfarin

Action Plan
• ↓ both BB and ARB
• Reemphasized to reduce IDWG
• ↓ dialysate temperature to 36C
• Increased dialysis time
• Started Midodrin 5 mg at 0-30 min into dialysis

Cardiolog/PCP clinic
• Sitting BP: 150/90 mmHg
• Medication list: minimal dose of BB and ARB
• ???Addition or increase dose of BP meds

Sitting BP: 150/90 mmHg
Standing BP: 118/82 mmHg

Sitting BP: 140/88 mmHg
Standing BP: 106/78 mmHg

Our Approach For Use of Midodrine in Autonomic Insufficiency

• Maximal efforts to reduce IDWG
 – With high UF rate- hypotension is inevitable
• Rule out cardiogenic sources requiring intervention
 – Pericardial effusion
 – Active ischemia
 – Uncorrected valvular disease
• Cardiogenic vs autonomic failure
 – Orthostatic drop less common in heart failure
 – Pure heart failure usually have chronic hypotension
• Careful with H/O Urinary retention
Our Approach For Use of Midodrine-contd.

• Hemodialysis
 – Pre-HD
 – Mid-HD if pre-HD BP is very high
 – Rarely need during interdialytic period as compensation through volume gain
• Peritoneal Dialysis
 – Need on daily basis bid to tid
 – We give parameters to the patients to hold to avoid supine hypertension
 • Sitting SBP> 150-160 mmHg
 • Standing SBP>110-120 mmHg
• Recommendation for other providers
 – Check standing BP as well

Take Home Messages

• Blood pressure fluctuates in all the ranges in ESRD patients
 – In relation to the timing of the dialysis
 – Modality
• ABPM or Home BP are the best assessment
 – In absence, average of pre-, post-HD and intradialytic BP
• Autonomic failure is common
 – Elderly diabetic
 – Orthostatic measurement of BP is of vital importance
• Volume control is important to manage both high and low BP
 – Dietary sodium restriction
 – Ultrafiltration
THNAK YOU!

Questions?