Screening for Critical Congenital Heart Disease in the Apparently Healthy Newborn

A presentation of Texas Pulse Oximetry Project:
A Joint Educational Initiative of The University of Texas Health Science Center at San Antonio/Department of Pediatrics, Baylor College of Medicine/Department of Pediatrics and Texas Department of State Health Services

Disclosure

Alice K. Gong, M.D. has no relationships with commercial companies to disclose.

PI of TXPOP and TXPOP II funded by Texas Department of State Health Services' Children's Outreach Heart Program.

Objectives

- Explain the rationale for screening for Critical Congenital Heart Disease (CCHD) in newborns
- Examine the evidence supporting the routine use of pulse oximetry in the Newborn Nursery to detect CCHD
- Discuss evidence-based recommendations for implementation of CCHD screening

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Congenital Heart Disease

- Incidence: 8-9/1000 births
- 2/1000 potentially lethal - “critical”
 - Requiring expert cardiac care and intervention in the immediate NB period or early infancy.
- In the US, about 4800 babies are born each year with CRITICAL CHD
- Leading cause of death in infants < 1 year old

Congenital Heart Disease

- Advances in surgical and interventional cardiology has improved survival over the past 30 years.
 - There are an estimated 800,000 adults living with CHD.
 - Survivors who present late are at greater risk for neurologic injury and subsequent development delay.
 - Focus now has shifted from increasing survival to reducing morbidity.
Critical Congenital Heart Disease

- Those CHD's that will require cardiac intervention in the newborn period or within the first year of life.
 - Ductal dependent systemic circulation
 - HLHS, Coarctation, IAA, Critical AS
 - Ductal dependent pulmonary circulation
 - PA, PS and variants, TOF
 - Complex critical CHD
 - TGA, Truncus Arteriosus, TAPVR, Single ventricle

Critical Congenital Heart Disease

- Physiologic changes may occur after hospital discharge corresponding to changes in the pulmonary vascular resistance and closure of the patent ductus arteriosus.
- Present in extremis with low cardiac output and acidosis, multi-organ failure, hypoxic ischemic brain injury.
- Early detection and timely intervention can thus decrease morbidity and lead to better outcomes.

Why screening?

- Incidence is sufficient in the population
- Therapy provided before onset of clinical manifestations results in an improved outcome
- Screening identifies disease before symptoms
- Test has acceptable sensitivity and false positive rates
- Cost effective

Wilson and Junger WHO 1968 Public Health Paper
Diagnosis vs. Screening

<table>
<thead>
<tr>
<th></th>
<th>Diagnostic</th>
<th>Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Fewer resources needed</td>
<td>Higher detection rate</td>
</tr>
<tr>
<td>Cons</td>
<td>Identification may be too late</td>
<td>High resource use</td>
</tr>
<tr>
<td></td>
<td>Application may be spotty</td>
<td>Adverse impact of false positives</td>
</tr>
</tbody>
</table>

CCHD detection – diagnostic

- Fetal echocardiography
 - >50% detection rates for single ventricle lesions
 - <30% for 2-ventricle
 - Highly variable, limited access
- Newborn physical exam
 (in nursery and in clinic)
 - 4-5 grams of deoxygenated Hgb is needed to detect cyanosis
 - Most CCHD have mild desaturation to 80-95%
 - Harder in darker skinned babies

Diagnostic Process

Newborn presents in shock with murmur

Exam suggestive of CHD

Hypoplastic Left Heart
Perspective on Importance: Timing of Diagnosis of CCHD

Age of initial diagnosis among term infants with CCHD, Arkansas, 2000 - 2008

Missed Diagnosis

- Some babies can appear healthy at first
 - Some have no murmurs or cyanosis

- PE alone failed to identify 50% of CHD’s that were not detected by prenatal U/S
 - Failure to diagnose CCHD may lead to critical events, cardiogenic shock or death

- Estimated 30% of infant deaths from CCHD occur before diagnosis

Chain of Detection
Missed Diagnosis of CCHD

Table 2. Total Number of Patients in Each Group by Diagnosis

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>Pulmonary atresia</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>Transposition of great vessels</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>TGA</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>Heterotaxy with hypoplastic left heart syndrome</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>Transposition of great vessels</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>Heterotaxy with pulmonary atresia</td>
<td>368 (22.1)</td>
<td>36 (21.1)</td>
<td>36 (21.1)</td>
</tr>
<tr>
<td>Median age</td>
<td>13.5 days</td>
<td>13.5 days</td>
<td>13.5 days</td>
</tr>
</tbody>
</table>

Abbreviations: BVR: branch vein right ventricle, TAPVR, total anomalous pulmonary venous return.

Excludes of reading, percentages may not total 100.

*Small number of patients enrolled to the study selection criteria specified in the “Patient Selection” section of the “Methods” section.

Chang et al, Arch Pediatr Adolesc Med, 2018

CCHD Screening

- **Pulse Oximetry**
 - Indirectly monitors the oxygen saturation of a patient’s blood and changes in blood flow in the skin
 - Can detect mild hypoxemia without obvious cyanosis
 - Can provide continuous and immediate values
 - Non-invasive
 - Easy to use and widely available
 - Cost-effective and widely used

Pulse Oximetry Screening - Evidence

- Using a cut-off of 95% in the LE, Hoke et al identified 81% of infants with CCHD
- Many investigators have since investigated the use of pulse oximetry as a screening tool in newborns NOT known to have CCHD
 - Most studies were small, with different protocols and cut-offs, at low altitude
 - Low false positive rate < 1%, sensitivity <80%
 - Likely because hypoxemia is not present in all CCHD

Hoke et al, Oxygen saturation as a screening test for critical CHD. Ped Cardiol. 2002; 23:203-409

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Pulse Oximetry Screening Program Saxony, Germany

Pulse Oximetry Screening - Evidence

- 2 separate large prospective screening of 40,000 newborns in Sweden and nearly 40,000 in Germany.
- Sensitivity 62%, Specificity 99.8%
- A meta-analysis of pulse ox screening for CCHD in asymptomatic newborns
 - Over 220,000 NB's
 - Overall sensitivity was 76.5%, specificity was 99.9% with a false positive rate of 0.14%

Cost of Routine Pulse Oximetry

- Includes both the direct cost of the pulse oximetry and the follow-up costs of any additional examinations and transfers.
 - At experienced centers, it took technicians only 2 minutes on average to perform screen.
 - Calculation of time in New Jersey 9 min per child
 - No new nursing or medical technician FTEs added
 - Cost of approximately $3-6 per asymptomatic newborn
 - Assumes reusable probe
 - Single use probes up to $30
Current Status of Recommendations

- US Health and Human Services Secretary's Advisory Committee on Heritable Disorders in Newborns and Children (HHS-SACHDNC)
 - In 2010, recommended that CCHD be added to the newborn uniform screening panel
 - Identify newborn with structural heart defects associated with hypoxia that could have significant morbidity or mortality early in life with closing of the patent ductus arteriosus or other physiologic changes
 - 2011, Endorsed by Secretary of Health Kathleen Sibelius

Texas

- HB 740 passed the Senate on 5/13/2013 and was signed into law – effective September 1, 2013.
 - Taryn Kennedy, Nash Sievers & Rex Van de Putte act. Taryn & Nash are two babies who died from CCHD and their moms worked on the legislation. Rex is the grandson of Sen. Leticia Van de Putte who passed away at 6 months of SIDS.
 - Requires all newborns of a birthing facility be screened
 - Exceptions – parental refusal, transfer prior to screening, screening had previously been completed, discharge before 10 hours and referral made.

Barriers to implementation

- Reporting/Tracking/ QI
- Inadequate resources – few Pediatric cardiologist
- Resistance from some in the medical community
- Screener
 - Additional work load
 - Education
- Equipment
 - Probe, pulse oximeters (2 are FDA approved)
- Patient/Parent
 - False positives, false negatives
 - Delay in discharge
- Potential transfer to another center
- Costs and reimbursement
AAP/CDC Algorithm

CCHD Screening Protocol
- 7 primary targets
 - Hypoplastic Left Heart Syndrome
 - Pulmonary Atresia (with intact atrial septum)
 - Tetralogy of Fallot
 - Total Anomalous Pulmonary Venous Return
 - Transposition of the Great Arteries
 - Tricuspid Atresia
 - Truncus arteriosus
- 17-31% of all CHD's

CCHD Screening Protocol
- Secondary screening targets
 - Can be just as severe but not consistently detected
 - Aortic arch atresia/hypoplasia
 - Interrupted aortic arch
 - Coarctation
 - DORV
 - Ebstein's anomaly
 - PS, PA, AVCD
 - Other Single ventricle defects
How to Perform Screening

- Screen after 24 hours of age
- Conduct when infant is calm and awake
- Perform in preductal (RIGHT hand) and postductal (one FOOT), in parallel or one after the other
- If < 90% - positive screen, refer
- If ≥ 95% in EITHER extremity with ≤ 3% difference: PASS
- If 90 - 94% in BOTH or difference > 3%: REPEAT in 1 hour up to 2 times, then refer

How is it done?

CCHD Screening Algorithm

Pulse ox on right hand and foot after 24 hours

- > 95% in right hand (RH) or foot and ≤ 3% difference between RH and foot
 - Positive (FAIL)
 - Notify MD/NNP

- 90-94% in RH and foot
 - ≥ 3% difference between RH and foot
 - Repeat in 1 hour

- < 90% in RH or foot
 - Positive (FAIL)
 - Notify MD/NNP

Remind parents that CCHD newborn screening may not find all types of problems in a baby’s heart.
Evaluation for Positive Screen

- Clinical Assessment – transfer to NICU
- Infectious or Pulmonary pathology should be excluded
- Complete echocardiogram
- Pediatric Cardiology referral as indicated

Managing the Positive Screen

“In the absence of other findings to explain hypoxemia, CCHD needs to be excluded on the basis of a diagnostic echocardiogram (which would involve an echocardiogram within the hospital or birthing center or transport to another institution)....”
Kemper et al Pediatrics 2011

- Alternative strategies
 - Keep child until evaluation can be performed
 - Transfer to advanced nursery (without cardiac inpatient service)
 - Transfer to center with advanced cardiac care

Screening in the Real World

- Feasibility of implementing pulse oximetry screening for CHD in a community hospital
- 6745 eligible infants screened at average age 42h
 - 9 positive – 1 had CCHD
- Barriers (1.4%):
 - screening equipment 54%
 - staff 23%
 - infant 20%
 - family 4%
- Physician and Nurse “champions” important to successful implementation
TxPOP

- Texas Pulse Oximetry Project: A Joint Educational Initiative.
- Goal: Develop an appropriate implementation strategy for screening of CCHD using pulse oximetry as a potential public health mandate.
 - Develop and provide educational programs and materials
- Funding: Texas Department of State Health Services’ Children’s Outreach Heart Program

Project Timeline

Quality Improvement – Feb-July

- 12,946 births in the 13 facilities
- 11,713 newborn nursery admissions
- 11,289 CCHD newborn screens
- 96% of babies admitted to the newborn nursery received a CCHD screen during the recommended time frame (between 24 hours and discharge).
- Babies not admitted to the newborn nursery after birth (approximately 1,235)
- Transfers out of newborn nursery prior to CCHD screen (249)
- Screens performed prior to 24 hours (38)
Positive Screens – 11 – all had ECHOs
False Positive rate of 0.097%

- 2 were in the <90% group – 1 had severe CCHD from secondary target; other had subclinical seizures
- 7 were the indeterminate of 90-95% X 3
- 1 had >5% difference

- 32 babies from the 13 facilities had ECHOs
- Only 3 transfers from initial facility, all within same zipcode

TAPVR

pneumonia
Toolkits
- http://txpeds.org/txpop
- http://www.dshs.state.tx.gov

CCHD learning module
- www.txhealthsteps.com
 - 1 hr CME, CNE, CES (social workers), NCHEC (certified health education specialists).

Example 1
- A term newborn at 24 hours has the following:
 - Right hand SpO2 of 99%
 - Right leg SpO2 of 94%

Pass
Fail
Repeat
Example

- A term newborn at 24 hours has the following:
 - Right hand SpO2 of 99%
 - Right leg SpO2 of 94%
 - Pass
 - Fail
 - Repeat

Example 2

- A newborn at 36 hours has the following:
 - Right hand SpO2 of 95%
 - Left leg SpO2 of 94%
 - Pass
 - Fail
 - Repeat
References

References

References

7) Congenital heart disease (CHD) in the newborn: Presentation and screening for critical CHD. Carolyn A. Altman, MD; Wolters Kluwer Health, Official reprint from UpToDate; Literature review current through 2012
