Medical Management of Pediatric Seizures
Linda D. Leary, M.D.
Associate Clinical Professor of Pediatrics & Neurology
South Texas Comprehensive Epilepsy Center
UT Health Science Center San Antonio

Disclosure
Linda D. Leary, M.D. discloses the following relationships with commercial companies:
Owns stock in Johnson & Johnson

Learning Objectives
At the end of this presentation the participant will be able to:
1. Determine appropriate antiepileptic drugs (AEDs) based on seizure type
2. Recognize current AEDs and typical adverse events

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Antiepileptic Drugs (AEDs)
- Decreases the severity and/or frequency of seizures
- Treats the symptoms of the seizures not the underlying condition
- Goal of treatment to maximize quality of life through seizure control while minimizing adverse effects

Challenges in Pediatric AED Use
- Drugs initially tested in adults
- Rare inclusion of young children in trials
- Formulation may not be child friendly
- Different susceptibility to adverse effects
- Epilepsy types different in children
- Different pharmacokinetics

History of AED Development
- 1857 - bromides
- 1912 - phenobarbital
- 1937 - phenytoin
- 1944 - trimethadione
- 1954 - primidone
- 1958 - ACTH
- 1958 - ethosuximide
- 1963 - diazepam
- 1974 - carbamazepine
- 1975 - clonazepam
- 1978 - valproate
- 1993 - felbamate
- 1995 - gabapentin
- 1995 - lamotrigine
- 1997 - topiramate
- 1999 - levetiracetam
- 2000 - oscarbazepine
- 2005 - pregabalin
- 2008 - lacosamide
- 2009 - vigabatrin
- 2011 - clozazepam
- 2012 - paravanel
- 1993 - felbamate
- 1995 - lamotrigine
- 1997 - topiramate
- 1999 - levetiracetam
- 2000 - oscarbazepine
- 2005 - pregabalin
- 2008 - lacosamide
- 2009 - vigabatrin
- 2011 - clozazepam
- 2012 - paravanel
Pediatric FDA Approved AEDs

<table>
<thead>
<tr>
<th>AED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabapentin</td>
<td></td>
</tr>
<tr>
<td>Felbamate</td>
<td></td>
</tr>
<tr>
<td>Lamotrigine</td>
<td></td>
</tr>
<tr>
<td>Topiramate</td>
<td></td>
</tr>
<tr>
<td>Tiagabine</td>
<td></td>
</tr>
<tr>
<td>Levetiracetam</td>
<td></td>
</tr>
<tr>
<td>Oxcarbazepine</td>
<td></td>
</tr>
<tr>
<td>Zonisamide</td>
<td></td>
</tr>
<tr>
<td>Lacosamide</td>
<td></td>
</tr>
<tr>
<td>Rufinamide</td>
<td></td>
</tr>
<tr>
<td>Vigabatrin</td>
<td></td>
</tr>
<tr>
<td>Clobazam</td>
<td></td>
</tr>
<tr>
<td>Perampanel</td>
<td></td>
</tr>
</tbody>
</table>

Cellular Basis of Seizures

Excitation
- Inward Na⁺ and Ca²⁺ currents
- Neurotransmitters: glutamate, aspartate

Inhibition
- Inward Cl⁻, outward K⁺ currents
- Neurotransmitter: GABA

Mechanisms of Action of AEDs

- Reduce excitation
 - Na⁺ channels blockers / inactivators
 - Ca²⁺ channel blockers
 - Reduce glutamate

- Increase inhibition
 - K⁺ channel modulators
 - Enhance GABA
Summary of AED Mechanisms

<table>
<thead>
<tr>
<th>AED</th>
<th>Na⁺ Channel Blockade</th>
<th>Ca²⁺ Channel Blockade</th>
<th>Glutamate Receptor Antagonism</th>
<th>GABA Enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenytoin</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBZ, OXC</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethosuximide</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vigabatride</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perampanel</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium channel</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topiramate</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonisamide</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonisamide</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethosuximide</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valproate</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felbamate</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabapentin</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacosamide</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rufinamide</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vigabatrin</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Adapted from White HS and Rho JM, Mechanisms of Action of AEDs, 2010.

Approach to Treatment: Absence

- Treatment of choice: ethosuximide (CAE), valproate, lamotrigine
- Alternative options: zonisamide, topiramate, levetiracetam, felbamate

Approaches to Treatment: Myoclonic / GTCS

- Treatment of choice: valproate, topiramate, zonisamide, lamotrigine
- Other options: levetiracetam, benzodiazepines, felbamate, phenobarbital

Approaches to Treatment: Partial

- Treatment of choice: Oxcarbazepine, carbamazepine, levetiracetam, lamotrigine*
- Other options: gabapentin, lacosamide, phenytoin, phenobarbital, valproate

Approach to Treatment: Lennox-Gastaut Syndrome

- Treatment of choice: valproate, topiramate, lamotrigine*
- Other options: zonisamide, levetiracetam, rufinamide, felbamate, clobazam
- Most AEDs have a place in treatment of LGS

Approach to Treatment: Newborns & Infants

- Limited data
- Transition from phenobarbital to newer agents
- Limited reports of levetiracetam, topiramate use in infants

- Infantile spasms
 - Best data for ACTH, prednisone, vigabatrin (T.S.C.)
 - Efficacy based on limited data with topiramate, zonisamide, valproate, felbamate, phenobarbital, benzodiazepines

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Types of Adverse Effects

- Acute dose-related
- Chronic
- Idiosyncratic

Acute / Dose Related AEs

- Sedation
 - Many AEDs except lamotrigine / felbamate
- Imbalance, dizziness
 - Often with Na+ channel drugs
- Nausea
- Tremor
 - Valproate / lamotrigine

Acute / Dose Related AEs (2)

- Mood issues
 - May see with any AED
 - Levetiracetam / gabapentin
- Cognitive decline
 - Phenobarbital, topiramate > zonisamide
- Paresthesias / kidney stones / oligohydrosis
 - Topiramate / zonisamide
Acute / Dose Related AEs (3)
- Diplopia
- Carbamazepine / lamotrigine
- Lab abnormalities
 - Hyponatremia
 - Oxcarbazepine>carbamazepine
 - Metabolic acidosis
 - Topiramate / zonisamide
 - Hematologic
 - Changes in AST or ALT

Acute / Dose Related AEs (4)
- Weight gain
 - Valproate
 - Gabapentin
- Weight loss
 - Topiramate
 - Zonisamide
 - Felbamate

Idiosyncratic Adverse Effects
- Rash
- Stevens-Johnson Syndrome
- Hematologic abnormalities
- Hepatotoxicity
Pharmacokinetic Factors in Pediatrics

- Neonate - often lower per kg doses
 - Low protein binding
 - Low metabolic rate
- Children - higher, more frequent doses
 - Faster metabolism

Pharmacological Differences Affect Adverse Effects

- Carbamazepine
 - Adverse reactions to metabolite
 - ↑ CBZ epoxide: CBZ ratio in children
 - More rapid CYP metabolism to epoxide > elimination
 - Especially elevated with concomitant valproate use
 - Labs aren't useful

AED Hypersensitivity Syndrome

- Characterized by rash, systemic involvement
- Cross-reactivity
 - phenytoin
 - carbamazepine
 - phenobarbital
 - oxcarbazepine
- Relative cross reactivity - lamotrigine

AED → arene oxide intermediate → non-toxic metabolite
Lamotrigine Metabolism

![Lamotrigine Metabolism Diagram]

Risk of Adverse Events

- Felbamate
 - Aplastic anemia 1 in 3,600 to 5,000 exposed patients
 - Never reported in children < 13 years
 - Fatal liver toxicity
 - 1 in 12,000 to 34,000

Valproic Acid Related Liver Toxicity

- Increased risk in children < 3 years (1:500) if
 - Taking several AEDs
 - Coexistent medical issues (IDD, metabolic syndrome)
- Children < 2 years with higher risk (1:800) for developing hepatotoxic syndrome without risk factors
- Adult risk of fatal hepatotoxicity without risk factors
 - 1:500,000

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Carnitine Use

- Bohan et al. Neurology 2001
- Evaluation of 92 patients with severe valproate-induced hepatotoxicity
 - 48% of 42 patients treated with L-carnitine survived vs. 10% of 50 patients treated with supportive care
- Dosing for carnitine 50-100 mg/kg/day

Avoid Use of VPA in Metabolic Disease

- Valproic acid alters fatty-acid metabolism, impairs beta-oxidation (a mitochondrial process), and disrupts the urea cycle
- Through several mechanisms, valproic acid depletes carnitine levels resulting in decreased transport of fatty acids and their accumulation in the cytoplasm

Chronic Adverse Effects of AEDs

- Osteomalacia or osteoporosis
- Teratogenesis
- Reproductive
- Altered connective tissue metabolism or growth
Conclusions

- Optimal AED treatment of child based on efficacy and risks
- Knowledge of age-specific toxicity important in clinician and parental decisions
- Limitations in clinical trials impair data driven decisions