Temporal Encephaloceles: Evidence of Epileptogenicity
Zeke Campbell, M.D.
Assistant Professor

Disclosures
• There are no relevant disclosures for this presentation

Objectives
• To understand the meaning and characteristics of encephaloceles
• To understand the relationship between temporal encephaloceles and epilepsy
• To understand the potential reasons for increased prevalence of encephaloceles in patients with epilepsy

Case

Case #1
• 37-year-old right-handed woman with a history of migraines, sickle cell trait
• Seizures began at age 32
• Epilepsy risk factors: normal birth and development; no major CNS injury/infections, no febrile seizures
• Current meds: zonisamide 300 mg qhs, oxcarbazepine 1200 mg bid
• Prior AEDs: levetiracetam
• Comorbid conditions: Depression, following with a psychiatrist

Semiology
Typical events:
• Aura: “rush” sensation over her face, sweating, lightheadedness
• Ictus: impairment of awareness with oral and manual automatisms. Events sometimes progress to increased tonicity in all extremities and bilateral convulsions that last approximately one minute
• Post-ictal: fatigued and confused for hours
• 2-3 times per month

Other occasional events during which she will hear people talking but cannot respond
Exam

- Obese (BMI 38)
- Vital signs within normal limits
- Unremarkable general exam
- Neuro exam non-focal

Initial Seizure

Initial Seizure Work-up

- Three separate EMU admissions:
 - Interictal: left anterior temporal sharp waves
 - Three left temporal seizures (see figure)
 - Two nonepileptic events
 - SPECT injection performed during a nonepileptic event (increased perfusion in the right frontal cortex)
- PET: no definitive seizure focus

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Patient feels "off" EEG seizure begins "Don't, don't, don't..."

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Oral automatisms
EEG

EEG in bipolar montage:
- Sensitivity: 10 µV/mm
- Low frequency filter at 1 Hz
- High frequency filter at 70 Hz

Oral automatisms continue

EEG seizure ends

MRI

T2 SPACE (A) axial and (B) sagittal sections prior to LiTT

Images courtesy Milad Yazdani, MD

Treatment Recommendations

- **Wada:**
 - Left hemisphere representation of language
 - Bilateral representation of memory
- **Multidisciplinary refractory epilepsy conference (REC)** → candidate for LiTT

MRI

- Initially interpreted as normal
- Later reviewed and determined to have subtle increased T2 signal in the left hippocampus

MRIs courtesy Milad Yazdani, MD
Post-ablation Course

- Patient continued to have 4-8 seizures per month for 6 months following LiTT
- Re-evaluated in the EMU:
 - 6 left temporal seizures
 - 2 nonepileptic events
 - 5 events that were poorly-visualized or were not associated with impairment of awareness

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

"No," when asked if OK
EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Moaning intensifies

EEG

EEG in bipolar montage: sensitivity 20 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

Oral automatisms

Grunting

EEG

EEG seizure ends

Treatment

Recommendations

- Case re-discussed → Proceed with left ATL

EEG

EEG in bipolar montage: sensitivity 10 µV/mm; low frequency filter at 1 Hz; high frequency filter 70 Hz.

EEG seizure ends

MRI – post-ATL

Postoperative Course

- Following the operation: right upper quadrantanopsia, memory loss, and occasional HAs
- Patient continues to be seizure-free for the last 18 months since her ATL
- She continues to follow with psychiatry
Temporal Encephaloceles

What are encephaloceles?

- Herniations of the brain through dura mater and skull
 - Acquired or congenital
 - Asymptomatic or result in varying pathologies based on anatomic location

Spontaneous encephaloceles

- Result in the absence of trauma, iatrogenesis, neoplasms, or inflammatory conditions
- Noted association with IIH
- 67% with TE and CSF leak → elevated ICP
- Higher average BMIs

Temporal lobe encephaloceles

- Involve the middle cranial fossa
- Associations:
 - Recurrent meningitis
 - CSF fistulas
 - Otitis
 - Hearing loss
 - Drug-resistant epilepsy

How common are encephaloceles?

- 6% to 34% of temporal bones show dehiscence involving the mastoid tegmen
 - 1% to 6% revealing multiple dehiscences
- Clinically relevant encephaloceles – ~1 in 35,000
- TEs represent an even more uncommon subset of an already rare disease

Improved detection of TEs

- 23 patients with TEs
 - 0.3% of MRIs in newly-diagnosed patients with epilepsy
 - 1.9% in drug-resistant patients
- Epilepsy surgery because of encephaloceles accounted for 10% of temporal lobe resections
Discrepancy in prevalence

- Obesity in the developing world → IHH → skull defects → small encephaloceles
- Other possible factors include referral patterns and surgical selection process
- Improvements in imaging technology

Small TEs in epilepsy

- 22 patients with STPEs
- 9.6% of patients with temporal lobe epilepsy (TLE)
- 0.5% of those with extra-TLE
- STPEs in patients with TLE:
 - Initial MRI study reported as normal – 23.3%
 - MRI-visible lesions – 1.4%

Cases of TEs with Epilepsy in the Literature

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>30</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Imaging and TE detection

- TEs confirmed after “close inspection” of previously normal 3T MRI or high-res CT
- TE on 7T MRI after initial 3T MRI was interpreted as normal
- Majority of cases prior to 2014 were noted incidentally at the time of surgery

Detection and characteristics of TEs

- MRIs in patients with refractory epilepsy over a 7-year period reviewed by an expert neuroradiologist
- 418 patients with available MRI:
 - 7 had TEs reported on initial imaging
 - 52 (12.5%) had TEs on expert review

Demographics

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>TE (N = 32)</th>
<th>Without TE (N = 356)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>43.3 ± 13.5</td>
<td>43.3 ± 12.2</td>
<td>43.3 ± 13.6</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI</td>
<td>28.7 (24.1, 35.4)</td>
<td>36.9 (30.0, 40.7)</td>
<td>27.7 (23.9, 33.7)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Age at Onset</td>
<td>15.0 (6.0, 29.0)</td>
<td>35.0 (29.0, 45.0)</td>
<td>14.0 (5.0, 22.0)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Years with Epilepsy</td>
<td>16.0 (7.0, 27.0)</td>
<td>4.5 (2.0, 5.1)</td>
<td>17.0 (9.0, 28.0)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Male</td>
<td>176 (42.1%)</td>
<td>9 (17.3%)</td>
<td>167 (45.6%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Radiologic Findings

<table>
<thead>
<tr>
<th>Normal</th>
<th>MRI</th>
<th>MRI Magn + 3T</th>
<th>SPACE was used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>TE</td>
<td>Without TE</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>N = 52</td>
<td>N = 366</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>157 (37.6%)</td>
<td>31 (90.6%)</td>
<td>126 (37.7%)</td>
</tr>
<tr>
<td>MRI</td>
<td>341 (81.8%)</td>
<td>50 (96.2%)</td>
<td>291 (79.7%)</td>
</tr>
<tr>
<td>MRI Magn + 3T</td>
<td>175 (41.9%)</td>
<td>48 (92.3%)</td>
<td>126 (34.7%)</td>
</tr>
<tr>
<td>SPACE was used</td>
<td>11 (2.6%)</td>
<td>5 (9.6%)</td>
<td>6 (1.8%)</td>
</tr>
<tr>
<td>Abnormal</td>
<td>98 (23.4%)</td>
<td>48 (92.3%)</td>
<td>50 (13.7%)</td>
</tr>
<tr>
<td>Abnormal sella turcica</td>
<td>9 (2.2%)</td>
<td>6 (11.5%)</td>
<td>3 (0.8%)</td>
</tr>
</tbody>
</table>

Seizure Localization

<table>
<thead>
<tr>
<th>Total</th>
<th>TE</th>
<th>Without TE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>N = 250</td>
<td>N = 326</td>
<td>0.06**</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>326</td>
<td>0.06**</td>
</tr>
<tr>
<td>Temporal</td>
<td>223 (57.6%)</td>
<td>46 (90.2%)</td>
<td>177 (52.7%)</td>
</tr>
<tr>
<td>Non-localizable</td>
<td>109 (26.4%)</td>
<td>5 (9.8%)</td>
<td>94 (28.9%)</td>
</tr>
<tr>
<td>Non-temporal</td>
<td>62 (16.0%)</td>
<td>0 (0.0%)</td>
<td>62 (18.0%)</td>
</tr>
<tr>
<td>No-Seizures</td>
<td>1 (1.9%)</td>
<td>1 (12.5%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Temporal</td>
<td>250</td>
<td>326</td>
<td>0.06**</td>
</tr>
<tr>
<td>Non-localizable</td>
<td>109 (26.4%)</td>
<td>5 (9.8%)</td>
<td>94 (28.9%)</td>
</tr>
<tr>
<td>Non-temporal</td>
<td>62 (16.0%)</td>
<td>0 (0.0%)</td>
<td>62 (18.0%)</td>
</tr>
<tr>
<td>No-Seizures</td>
<td>1 (1.9%)</td>
<td>1 (12.5%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

Conclusion

- Careful inspection of MRI with special attention to high-resolution T2 sequence in patients with RTLE by an experienced, board-certified neuroradiologist can increase the detection of subtle TEs

Intraoperative ECoG in TEs

- 9 patients with TE
- 6 underwent intraoperative ECoG and resection
 - Interictal EDs arising from the region of the TE in all cases (6/6)
 - Interictal EDs from HCP in 4/5
 - When seizures were recorded, the TE was always involved at onset but with synchronous or rapid spread to the HCP in both cases

Summary

- TEs are seen in 2 to 12.5% of patients with refractory epilepsy and more commonly seen in patients with TLE
- TE detection can be improved by careful review of high-resolution T2 MRI by an experienced neuroradiologist
- Some patients may achieve seizure freedom after lesionectomy, even when the mesial temporal structures are not resected

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
References