

Objectives

- Understand the risk factors of lower leg stress fractures
- Understand the pertinent history of stress fractures
- Understand the role of imaging in detecting stress
- Know the common stress fractures of the lower leg, ankle, and foot
- Know the treatment options for the fractures

Objectives

- Understand how vitamin D is obtained
- Understand who is at risk for vitamin D deficiency
- Understand the role of vitamin D in the prevention of fractures
- Understand the role of vitamin D in the prevention of falls
- Understand Vitamin D replacement dosing

Stress Fractures

- Overuse injury
- Abnormal balance between osteoblast and osteoclast activity
- Occur most often in the lower lea

Stress Fractures

- Tibia
- Fibula
- Calcaneus
- Navicular
- Metatarsals
- Sesamoids

		·

Risk Factors

- Cavus foot
- Long second metatarsal
- Metatarsus adductus
- Amenorrhea
- Hyperthyroidism
- Malnutrition
- Training errors
- Poor footwear

History

- Pain with exertion
 - May progress to pain with daily activities
- Relief with rest
- Training errors
 - Rapid increase in intensity, duration, or frequency
 - No rest day
- Ask about normal menstration in females
- Ask about vitamin deficiencies (vitamin D) or disordered eating

Exam

- Look for abnormal alignment
- Swelling
- Warmth
- Tenderness
- Pain with percussion
- Pain with 3-point stress
- Pain with single leg hop

Imaging • Standard x-rays • Bone Scan CT • MR X-ray • 320 stress fractures in athletes Pain to onset x-ray changes • Weeks to months • Average 10 to 21 days • Changes in 30-70% of cases X-ray – Diaphyseal • Cortical • Transverse • Fracture line followed by callus • Example: 5th MT diaphysis

X-ray Metaphyseal • Cancellous • Perpendicular to stress • Sclerosis • Example: Calcaneus **Bone Scan** • Focal increased activity • Increased bone turnover • Sensitive CT • Fracture line • Callus • Specific • Radiation

MR Increased marrow edema • Linear decreased signal Associated soft tissue swelling or joint effusion • Sensitive and specific • No radiation **Treatment** • Confirm diagnosis • Patient education • Rest Avoid NSAIDs • Immobilization/Internal fixation • Bone stimulation • Cross-training/rehabilitation • Gradual return to sport Tibia • Medial tibial stress syndrome • Posterior medial tibia stress fracture • Anterior tibia stress fracture

Medial Tibial Stress Syndrome • "Shin splints" • Pain at the posteromedial border of the tibia • 15% of all running injuries • Thought to be a traction periostitis of the posteromedial tibia (attachment of the posterior tibialis, flexor digitorum longus, or soleus muscles) Medial Tibial Stress Syndrome • Usually a history of poor conditioning, training errors, or sloped/banked surfaces (excessive foot pronation) Exam demonstrates longitudinal tenderness along the posteromedial tibia, also look for valgus hindfoot/pes planus X-rays may show cortex irregularity along the posterior tibialis origin MRI will show marrow edema in a longitudinal pattern without fracture line Medial Tibial Stress Syndrome • Treatment • Relative rest (25-75% reduction in training) • Medial posted shoes or orthotics if needed • Gradual return to full training • Correct training errors

Posterior-medial Tibia Stress Fracture

 Same predisposing factors as MTSS

Posterior-medial Tibia

- History of pain with exertion that is relieved with rest
 - May progress to pain with normal walking
- Exam shows focal tenderness
 - May also see swelling or limp
- X-rays may show periosteal reaction, sclerosis, or fracture line
- MRI will show marrow edema and may show fracture line

Posterior-medial Tibia

- Treatment consists of rest
 - May require non-weightbearing or immobilization initially
 - No impact activities for 6 weeks
 - May cross train during this time
 - Swimming, stationary bike, elliptical
 - Gradual return to training

-		

Anterior Tibia Stress Fracture

- Less common
- "Dreaded black line"
- Increased risk of nonunion
- Focal anterior tenderness on exam
- MRI if needed to confirm

Anterior Tibia

- Treatment
 - Non-weightbearing/Immobilization
 - Up to 4-6 months
 - Possible IM fixation
 - Bone stimulator
 - Cross training
 - Rehabilitation
 - Gradual return to play

Fibula

- Valgus heel/Pronation
- Treatment
 - Rest
 - Cast boot
 - Functional brace
 - Medial posted shoe or insert

This presentation is the intellectual property of the author.	Contact
them for permission to reprint and/or distribute.	

Navicular

- Central hypovascular zone
- Risk of AVN or nonunion
- Pain with WB
- Tenderness over the navicular

Navicular

- Treatment
 - Non-displaced
 - Non-weight bearing 6-8 weeks
 - Cast-boot
 - Motion control insert
 - Bone stimulator
 - Displaced, recalcitrant, sclerotic
 - ORIF
 - Autologous bone graft

Calcaneus

- Tender tuberosity
- Painful squeeze test
- Non-weight bearing
- Cast-boot
- Cushioned heel

This presentation is the intellectual property of the author.	Contact
them for permission to reprint and/or distribute.	

Metatarsals 1-4 • 2nd most common Risk factors Varus foot - Cavus foot Adducted foot - Anterior ankle impingement • Treatment – cast boot and protected weightbearing Metatarsals 1-4 • Tenderness to the metatarsal • X-rays may be negative initially Treatment - Cast boot and protected weightbearing - Crosstraining - Gradual return to training after 6 weeks 5th Metatarsal • Metaphyseal-diaphyseal junction • Risk factors - Varus heel - Cavus foot - Adducted foot

Metaphyseal-Diaphsyseal Classification

- Acute (aka Jones fracture)
- Acute-on-chronic
- Chronic (stress fracture)

Imaging- Proximal metaphysealdiaphyseal junction fractures

- Transverse
- Corresponds to the articulation between the fourth and fifth metatarsal base
- Acute
 - Clean, narrow, and distinct fracture line

Imaging- Proximal metaphysealdiaphyseal junction fractures

- Acute-on-chronic fracture
 - acute fracture line over thickened and sclerotic bone

This presentation is	s the intellectual	property of	the author.	Contact
them for j	permission to rep	print and/or	distribute.	

Imaging- Proximal metaphysealdiaphyseal junction fractures

- Chronic
 - Sclerosis
 - Cortical thickening
 - Obliteration of the medullary canal

Imaging

- MR
 - Occult fractures
 - Early stress fractures
 - Intramedullary edema
 - Low signal line confirms a fracture

Treatment- Proximal Metaphyseal-Diaphyseal Fracture

- Potential vascular watershed
- Non-weight bearing
- Short leg cast
- Up to 12 weeks

This presentation is the intellectual property of the author. Co	ontact
them for permission to reprint and/or distribute.	

Complications-Proximal Metaphyseal-Diaphyseal Fractures

- Non-surgical treatment
 - Delayed union
 - Nonunion
 - Malunion
 - Re-fracture

Treatment- Proximal Metaphyseal-Diaphyseal Fracture

- Surgical treatment
 - Treatment failures
 - Healthy, athletic patients
- ORIF
- Percutaneous intramedullary fixation
- Bone graft

them for permission to reprint and/or distribute.

Complications-Proximal Metaphyseal-Diaphyseal Fractures

- Surgical treatment
 - Prominent, failed, incarcerated, or painful hardware
 - Sural neuroma

Treatment- Proximal Metaphyseal-Diaphyseal Fracture

- Hindfoot varus
 - Motion control shoe
 - Lateral posted shoe
 - Lateral posted insert
 - Concomitant calcaneal osteotomy

Sesamoid injury

- Sesamoiditis
- Sesamoid stress fracture
- · Tibial sesamoid most commonly affected
- Seen in dancers, runners, basketball, tennis, and cleat sports
- Tenderness at the affected sesamoid, pain with dorsiflexion of the great toe, pain with resisted flexion of the great toe

46

Sesamoid injury

- X-rays may be negative
- MRI can show edema or fracture line
- Treatment
 - Rest
 - Reduced weight bearing
 - Cast
 - Surgical resection for failed conservative treatment 3+ months
 - Complications: chronic pain,cock up deformity, hallux valgus (tibial) or varus (fibular)

47

Vitamin D

- Technically a hormone
- Has receptors throughout the body
 - (not just bone)
- Synthesized in the skin from cholesterol
 - Regulated by feedback mechanism
 - Can make 10,000-20,000 IU in 30 minutes
 - SPF 15 UVB sunscreen can decrease production by 98%

Vitamin D

- It is also obtained through diet
 - Oily fish (D3)
 - Fortified foods such as milk (D3)
 - Mushrooms (D2)
- It is converted to its biologically active form in the kidneys
- Vitamin D can be stored in body fat
 - (not enough to prevent seasonal deficiency)

49

Who is at risk?

- Limited solar exposure
 - Northern latitudes, indoor athletes, increased clothing and sunscreen use
- · Low dietary intake of vitamin D
- Decreased synthesis in the skin due to atrophy
- Poor absorption
- Poor renal function
 - Decreased conversion to active form

50

Vitamin D and Fractures

- Vitamin D deficiency leads to:
 - Increased bone turn over
 - Accelerated bone loss
 - Increased risk of low-energy fractures
- Several studies link vitamin D deficiency to hip fractures

Vitamin D and Fractures

- Supplementation with vitamin D and calcium reduces the risk of hip fractures and peripheral fractures
- One study showed that supplementing with 800 IU of vitamin D and 1200 mg of calcium showed hip fractures decreased by 26% and peripheral fractures decreased by 25% at 18 months

Vitamin D and Stress Fractures

- Several military studies associate stress fracture risk with lower vitamin D levels
- One study of showed that a levels of 6.5-26.9 ng/ml (20 ng/ml) had double the risk of those in the 40.2-112.5 (50 ng/ml) range
- Another study supplementing 2000 mg calcium and 800 IU vitamin D showed a 20% reduction in the incidence of stress fractures

- Several between function
- Vitamin calcium contracti
- Vitamin muscle
- Affects p leading

53	
Vitamin D and Falls	
studies have shown a connection	
vitamin D status and muscle	
D regulates both phosphorus and	
which are vital for muscle ion	
D deficiency caused impaired function and weakness	
proximal muscles (stabilizing) most	
to an increased risk of falls	
54	
his presentation is the intelle	ectual property of the author. Contact
them for permission	to reprint and/or distribute.

Vitamin D and Falls

- This is reversible with calcium and vitamin D supplementation
- One study showed that supplementing with 800 IU of vitamin D and 1200 mg of calcium daily for 8 weeks reduced body sway and number of falls over the next year

55

Vitamin D Supplements and Dosing

- Vitamin D2
 - Produced by phytoplankton, invertebrates, yeasts, and mushrooms that are exposed to UV light
- Vitamin D3
 - Made by animals in the skin
 - High levels in fatty fish
 - Occurs naturally in milk
 - · Can be increased by irradiating milk

56

Vitamin D Supplements and Dosing

- Recommended daily intake of D3 for age 50+
 - -600-800 IU
 - Some experts believe this should be increased to 1000-2000 IU
 - Maximum tolerable dose is 4000 IU
- · Recommended daily intake of calcium
 - 1200 mg

Vitamin D Replacement

- Current recommended level is 40 ng/ml
- D2 50,000 IU weekly for 8 weeks
 -<30ng/ml will require a second round
- D3 1,000 IU daily for every 10ng/ml short for 6 weeks
- · Repeat level after course

58

Thank you!

- Levy J: Stress fractures of the first metatarsal. Am J Roentgenol 130:679-681, 1978.
- Mosekilde, L. Vitamin D and the Elderly. Clinical Endocrinology. 2005;62(3):265-281
- McKeag DB, Moeller JL. ACSM's Primary Care Sports Medicine 2nd ed. Philadelphia 2007.

59

Thank you!

- Baxter DE, Zingas C: *J Am Acad Orthop Surg* 3(3):136-145, 1995
- Bennell KL, Malcolm SA, Thomas SA, et al: Am J Sports Med 24:810-818, 1996
- Matheson G, Clement D, McKenzie D, et al: Scintigraphic uptake of ^{99m}Tc at non-painful sites in athletes with stress fractures. The concept of bone strain. *Sports Med 4(1):65-75, 1987*

This presentation is the intellectual property of the author. Co	ontact
them for permission to reprint and/or distribute.	

Thank you!

 Lappe, J., Cullen, D., Haynatzki, G., Recker, R., Ahlf, R. and Thompson, K. (2008), Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits. J Bone Miner Res, 23: 741–749. doi: 10.1359/jbmr.080102

