Disclosures

• I have none

Objectives

• Understand the risk factors of lower leg stress fractures
• Understand the pertinent history of stress fractures
• Understand the role of imaging in detecting stress fractures
• Know the common stress fractures of the lower leg, ankle, and foot
• Know the treatment options for the fractures
Objectives

- Understand how vitamin D is obtained
- Understand who is at risk for vitamin D deficiency
- Understand the role of vitamin D in the prevention of fractures
- Understand the role of vitamin D in the prevention of falls
- Understand Vitamin D replacement dosing

Stress Fractures

- Overuse injury
- Abnormal balance between osteoblast and osteoclast activity
- Occur most often in the lower leg

Stress Fractures

- Tibia
- Fibula
- Calcaneus
- Navicular
- Metatarsals
- Sesamoids
Risk Factors

- Cavus foot
- Long second metatarsal
- Metatarsus adductus
- Amenorrhea
- Hyperthyroidism
- Malnutrition
- Training errors
- Poor footwear

History

- Pain with exertion
 - May progress to pain with daily activities
- Relief with rest
- Training errors
 - Rapid increase in intensity, duration, or frequency
 - No rest day
- Ask about normal menstruation in females
- Ask about vitamin deficiencies (vitamin D) or disordered eating

Exam

- Look for abnormal alignment
- Swelling
- Warmth
- Tenderness
- Pain with percussion
- Pain with 3-point stress
- Pain with single leg hop
Imaging

- Standard x-rays
- Bone Scan
- CT
- MR

X-ray

- 320 stress fractures in athletes
 - Pain to onset x-ray changes
 - Weeks to months
 - Average 10 to 21 days
 - Changes in 30-70% of cases

X-ray

- Diaphyseal
 - Cortical
 - Transverse
 - Fracture line followed by callus
 - Example: 5th MT diaphysis
X-ray

- **Metaphyseal**
 - Cancellous
 - Perpendicular to stress
 - Sclerosis
 - Example: Calcaneus

Bone Scan

- Focal increased activity
- Increased bone turnover
- Sensitive

CT

- Fracture line
- Callus
- Specific
- Radiation
MR

- Increased marrow edema
- Linear decreased signal
- Associated soft tissue swelling or joint effusion
- Sensitive and specific
- No radiation

Treatment

- Confirm diagnosis
- Patient education
- Rest
- Avoid NSAIDs
- Immobilization/Internal fixation
- Bone stimulation
- Cross-training/rehabilitation
- Gradual return to sport

Tibia

- Medial tibial stress syndrome
- Posterior medial tibia stress fracture
- Anterior tibia stress fracture
Medial Tibial Stress Syndrome

- “Shin splints”
- Pain at the posteromedial border of the tibia
- 15% of all running injuries
- Thought to be a traction periostitis of the posteromedial tibia (attachment of the posterior tibialis, flexor digitorum longus, or soleus muscles)

Medial Tibial Stress Syndrome

- Usually a history of poor conditioning, training errors, or sloped/banked surfaces (excessive foot pronation)
- Exam demonstrates longitudinal tenderness along the posteromedial tibia, also look for valgus hindfoot/pes planus
- X-rays may show cortex irregularity along the posterior tibialis origin
- MRI will show marrow edema in a longitudinal pattern without fracture line

Medial Tibial Stress Syndrome

- Treatment
 - Relative rest (25-75% reduction in training)
 - Stretching
 - Medial posted shoes or orthotics if needed
 - Gradual return to full training
 - Correct training errors
Posterior-medial Tibia Stress Fracture

• Same predisposing factors as MTSS

Posterior-medial Tibia

• History of pain with exertion that is relieved with rest
 • May progress to pain with normal walking
• Exam shows focal tenderness
 • May also see swelling or limp
• X-rays may show periosteal reaction, sclerosis, or fracture line
• MRI will show marrow edema and may show fracture line

Posterior-medial Tibia

• Treatment consists of rest
 • May require non-weightbearing or immobilization initially
 • No impact activities for 6 weeks
• May cross train during this time
 – Swimming, stationary bike, elliptical
• Gradual return to training
Anterior Tibia Stress Fracture

- Less common
- “Dreaded black line”
- Increased risk of non-union
- Focal anterior tenderness on exam
- MRI if needed to confirm

Anterior Tibia

- Treatment
 - Non-weightbearing/Immobilization
 - Up to 4-6 months
 - Possible IM fixation
 - Bone stimulator
 - Cross training
 - Rehabilitation
 - Gradual return to play

Fibula

- Valgus heel/Pronation
- Treatment
 - Rest
 - Cast boot
 - Functional brace
 - Medial posted shoe or inser
Navicular

- Central hypovascular zone
- Risk of AVN or non-union
- Pain with WB
- Tenderness over the navicular

Navicular

- Treatment
 - Non-displaced
 - Non-weight bearing
 - 6-8 weeks
 - Cast-boot
 - Motion control insert
 - Bone stimulator
 - Displaced, recalcitrant, sclerotic
 - ORIF
 - Autologous bone graft

Calcaneus

- Tender tuberosity
- Painful squeeze test
- Non-weight bearing
- Cast-boot
- Cushioned heel

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Metatarsals 1-4

- 2nd most common
- Risk factors
 - Varus foot
 - Cavus foot
 - Adducted foot
 - Anterior ankle impingement
- Treatment – cast boot and protected weight-bearing

Metatarsals 1-4

- Tenderness to the metatarsal
- X-rays may be negative initially
- Treatment
 - Cast boot and protected weightbearing
 - Crosstraining
 - Gradual return to training after 6 weeks

5th Metatarsal

- Metaphyseal-diaphyseal junction
- Risk factors
 - Varus heel
 - Cavus foot
 - Adducted foot

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Metaphyseal-Diaphysseal Classification

- Acute (aka Jones fracture)
- Acute-on-chronic
- Chronic (stress fracture)

Imaging - Proximal metaphyseal-diaphysseal junction fractures

- Transverse
- Corresponds to the articulation between the fourth and fifth metatarsal base
- Acute
 - Clean, narrow, and distinct fracture line

Imaging - Proximal metaphyseal-diaphysseal junction fractures

- Acute-on-chronic fracture
 - Acute fracture line over thickened and sclerotic bone
Imaging - Proximal metaphyseal-diaphyseal junction fractures

• Chronic
 – Sclerosis
 – Cortical thickening
 – Obliteration of the medullary canal

Imaging

• MR
 – Occult fractures
 – Early stress fractures
 • Intramedullary edema
 • Low signal line confirms a fracture

Treatment - Proximal Metaphyseal-Diaphyseal Fracture

• Potential vascular watershed
• Non-weight bearing
• Short leg cast
• Up to 12 weeks
Complications-Proximal Metaphyseal-Diaphyseal Fractures

- Non-surgical treatment
 - Delayed union
 - Nonunion
 - Malunion
 - Re-fracture

Treatment-Proximal Metaphyseal-Diaphyseal Fracture

- Surgical treatment
 - Treatment failures
 - Healthy, athletic patients
- ORIF
- Percutaneous intramedullary fixation
- Bone graft
Complications-Proximal Metaphyseal-Diaphyseal Fractures

- Surgical treatment
 - Prominent, failed, incarcerated, or painful hardware
 - Sural neuroma

Treatment- Proximal Metaphyseal-Diaphyseal Fracture

- Hindfoot varus
 - Motion control shoe
 - Lateral posted shoe
 - Lateral posted insert
 - Concomitant calcaneal osteotomy
Sesamoid injury

- Sesamoiditis
- Sesamoid stress fracture
- Tibial sesamoid most commonly affected
- Seen in dancers, runners, basketball, tennis, and cleat sports
- Tenderness at the affected sesamoid, pain with dorsiflexion of the great toe, pain with resisted flexion of the great toe

X-rays may be negative
- MRI can show edema or fracture line
- Treatment
 - Rest
 - Reduced weight bearing
 - Cast
 - Surgical resection for failed conservative treatment
 3+ months
 - Complications: chronic pain, cock up deformity, hallux valgus (tibial) or varus (fibular)

Vitamin D

- Technically a hormone
- Has receptors throughout the body
 - (not just bone)
- Synthesized in the skin from cholesterol
 - Regulated by feedback mechanism
 - Can make 10,000-20,000 IU in 30 minutes
 - SPF 15 UVB sunscreen can decrease production by 98%
Vitamin D

- It is also obtained through diet
 - Oily fish (D3)
 - Fortified foods such as milk (D3)
 - Mushrooms (D2)
- It is converted to its biologically active form in the kidneys
- Vitamin D can be stored in body fat
 - (not enough to prevent seasonal deficiency)

Who is at risk?

- Limited solar exposure
 - Northern latitudes, indoor athletes, increased clothing and sunscreen use
- Low dietary intake of vitamin D
- Decreased synthesis in the skin due to atrophy
- Poor absorption
- Poor renal function
 - Decreased conversion to active form

Vitamin D and Fractures

- Vitamin D deficiency leads to:
 - Increased bone turnover
 - Accelerated bone loss
 - Increased risk of low-energy fractures
- Several studies link vitamin D deficiency to hip fractures
Vitamin D and Fractures

- Supplementation with vitamin D and calcium reduces the risk of hip fractures and peripheral fractures
- One study showed that supplementing with 800 IU of vitamin D and 1200 mg of calcium showed hip fractures decreased by 26% and peripheral fractures decreased by 25% at 18 months

Vitamin D and Stress Fractures

- Several military studies associate stress fracture risk with lower vitamin D levels
- One study of showed that a levels of 6.5-26.9 ng/ml (20 ng/ml) had double the risk of those in the 40.2-112.5 (50 ng/ml) range
- Another study supplementing 2000 mg calcium and 800 IU vitamin D showed a 20% reduction in the incidence of stress fractures

Vitamin D and Falls

- Several studies have shown a connection between vitamin D status and muscle function
- Vitamin D regulates both phosphorus and calcium which are vital for muscle contraction
- Vitamin D deficiency caused impaired muscle function and weakness
- Affects proximal muscles (stabilizing) most leading to an increased risk of falls
Vitamin D and Falls

• This is reversible with calcium and vitamin D supplementation
• One study showed that supplementing with 800 IU of vitamin D and 1200 mg of calcium daily for 8 weeks reduced body sway and number of falls over the next year

Vitamin D Supplements and Dosing

• Vitamin D2
 – Produced by phytoplankton, invertebrates, yeasts, and mushrooms that are exposed to UV light
• Vitamin D3
 – Made by animals in the skin
 – High levels in fatty fish
 – Occurs naturally in milk
 • Can be increased by irradiating milk

Vitamin D Supplements and Dosing

• Recommended daily intake of D3 for age 50+
 – 600-800 IU
 – Some experts believe this should be increased to 1000-2000 IU
 – Maximum tolerable dose is 4000 IU
• Recommended daily intake of calcium
 – 1200 mg
Vitamin D Replacement

- Current recommended level is 40 ng/ml
- D2 50,000 IU weekly for 8 weeks
 - <30ng/ml will require a second round
- D3 1,000 IU daily for every 10ng/ml short for 6 weeks
- Repeat level after course

Thank you!

Thank you!

Thank you!