Knee Injuries in Skeletally Immature Athletes
Zachary Stinson, M.D.

General Concepts
- Increased rate and ability of healing
- Higher strength of ligaments compared to growth plates
- Continued growth
- Children are NOT just small adults

No Disclosures

Growth Around the Knee
- Distal Femoral Physis
 - 1 cm growth per year
 - 70% growth of the femur and 37% growth of the lower limb
- Proximal Tibial Physis
 - 0.7 cm growth per year
 - 55% growth of the tibia and 25% growth of the lower limb

Evaluation
- Injury mechanism
 - Contact vs. Non-contact
 - “Pop” or “snap”
 - Able to continue playing
 - Displacement or spontaneous reduction of patella
 - Presence of Effusion
 - Ligamentous laxity
 - Apparent varus/valgus laxity may be due to a physeal injury

Topics
- Distal Femur Fractures
- Proximal Tibia Fractures
- Tibial Tuberosity Fractures
- Tibial Eminence Fractures
- Pediatric ACL Tears
- Patellar Dislocations

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Distal Femur Fractures
- 7% of physeal injuries of the lower extremities
- Complex shape of the physis results in increased risk of focal physeal injury
- High-velocity trauma in younger juvenile patients
- Low-energy sports injuries, usually hyperextension, in adolescents

Classification
- Plain radiographs may be equivocal for type I fractures
- Oblique X-ray, contralateral films or consider MRI/CT
- Stress radiographs have fallen out of favor
- Salter-Harris II fractures account for 54% of these injuries

Treatment
- Nondisplaced – Immobilization for 4 to 6 weeks
- Displaced – Gentle closed reduction (90% traction, 10% manipulation) or Percutaneous pin/screw fixation
- Intra-articular extension of fracture – ORIF

Complications
- Growth Arrest (40-90%)
 - 64% for type IV
 - 58% for type II
 - 49% for type III
 - 36% for type I
- Leg Length Discrepancy (22%)
- Angular Deformity (24%)
- Repeat X-rays every 6-12 months
- Consider MRI to detect physeal bar

Proximal Tibia Physeal Fractures
- 3% of lower extremity physeal injuries
- Metaphyseal attachment of ligaments
- Hyperextension Mechanism
- Apex posterior angulation of metaphysis can cause injury to popliteal artery
- May auto-reduce to innocuous position

Management
- High index of suspicion for concomitant injuries
 - Vascular injury (5-7%)
 - Anterior compartment syndrome
 - Peroneal nerve injury
 - Ligamentous and meniscal injuries
- Classification and treatment similar to distal femoral fractures
- Pes anserinus may be interpositioned into fracture site for type II fractures

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Tibial Tuberosity Fractures
- Salter Harris Type III proximal tibia fractures
- 14-15% of proximal tibia fractures
- Violent contraction of the quadriceps or sudden passive flexion of the knee against a contracted quadriceps
- 90% are sports related
- Occur near end of growth - average age is 15
- Differentiate from Osgood-Schlatter’s disease

Treatment
- Most require operative fixation with k-wires or cancellous screws
- Anterior compartment fasciotomy may be indicated
- Immobilize in LLC or HKB for 4-6 weeks
- Return to sports requires 3 to 5 months
- Growth concerns not as common
 - genu recurvatum may develop in younger patient

Clinical Findings
- Patella Alta
- Knee held flexed at 20 to 40 degrees
- Unable to actively extend leg
- Anterior compartment swelling
 - Anterior compartment syndrome
 - Injury to the anterior tibial recurrent artery

Tibial Spine Fractures
- ACL insertion at chondroepiphysis, which is weaker than ACL
- 2% of knee injuries in children
- 8 to 14 years of age
- Usually associated with a plastic deformity or partial tear of ACL as well

Ogden Classification

Myers and Mckeever Classification

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Treatment
- Closed Management of Type I and reducible Type II with cast immobilization at 10 degrees for 6 weeks
- Open or arthroscopic treatment to achieve anatomic reduction with sutures or screws
- Inter-meniscal ligament or anterior horn of medial meniscus may be interposed
- Pull of attached anterior horn of lateral meniscus may be impediment to reduction

Pediatric ACL Tears
- History and exam is similar to adults
- Non-contact injuries associated with a "pop" and effusion
- Poor neuromuscular control and landing mechanics
- Older thinking was that tibial eminence fractures were pediatric equivalent of ACL tears
- Narrower notch width is associated with higher likelihood of tearing ACL vs. tibial eminence fracture

Complications
- Arthrofibrosis
 - Begin early ROM exercises at 4 weeks
 - Extension block from malunion or prominent hardware
- Residual laxity or instability
 - Up to 64% of patients at 4 years follow-up
 - Much less likely in children under 10

Work-Up
- Plain X-rays and MRI
 - Assess growth plates and additional injuries
 - Standing long-leg films
 - pre-existing LLD or alignment abnormality
- Assessment of maturity (chronologic, skeletal and physiologic age)
- Tanner stage
- PA hand and wrist X-ray for assessing bone age

Pediatric ACL Tears
- Increased incidence due to growth in popularity of youth sports, especially for females
- Athletes participating in high-school sports has doubled in past 40 years (1972 Title IX legislation)
- National Survey of Athletic Trainers in 2012
 - Female soccer players tore ACL 14.08 per 100,000 exposures
 - Male football players tore ACL 13.87 per 100,000 exposures

Treatment
- Non-operative treatment indicated for partial tears <50% and in select cases of complete tears
- Poor compliance limits success of treatment
- Overall incidence of meniscal tears 4% for operative vs. 67% for nonoperative
- Nonoperative patients unlikely to return to play

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Surgical Management

- Concern for physeal damage leading to growth arrest or angular deformity
- Few reports of this in literature with use of proper techniques
- Alternative fixation techniques
 - Physeal-sparing with combined intra-articular and extra-articular reconstruction using ITB
 - All-epiphyseal
 - Partial or complete transphyseal

Patellar Dislocation

- Non-contact injury that presents with acute hemarthrosis
- Patient may self-describe the dislocation and subsequent reduction
- Predisposing anatomy
 - Genu valgum, Femoral Anteversion, External tibial torsion, Patella Alta, Trochlear dysplasia, Hypermobility, Weak VMO

Surgical Management

- Minimize tunnel diameter
- More central and vertical tunnel drilling
- Soft tissue grafts that occupy <5% of the cross-sectional area have not been shown to cause growth arrest
- Quadrupled hamstring autograft is best choice
- Metaphyseal fixation

Evaluation

- If not reduced on presentation, gentle knee extension with medial force to achieve reduction
- Aspiration of hemarthrosis may be considered
- Assess for patella alta, tenderness over medial retinaculum and apprehension on lateral patellar translation
- Plan X-rays (merchant view) and MRI
 - Osteochondral fractures and loose bodies
 - MPFL, VMO and concomitant injuries

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Treatment

- Nonoperative management
 - Preferred for most first-time dislocations
 - Immobilization for 3 weeks with rehab program focusing on strengthening of VMO

- Operative management
 - Indicated in setting of osteochondral fracture or loose body, recurrent dislocations, significant injury to medial stabilizers with VMO retraction
 - MPFL repair vs. reconstruction
 - Distal realignment may be indicated
 - Lateral release rarely, if ever, indicated

Thank You