Foot and Ankle Problems in the Pediatric Athlete

Grant D Hogue, MD
43rd Annual Symposium on Sports Medicine (1-22-2016)

Overview

- Developmental Problems
 - Pes Planus
 - Tarsal Coalition
 - Adolescent Bunion
 - Accessory Ossicles
 - Os Trigonum
 - Accessory Navicular
 - Medial Malleolus Ossification Center
 - Acute Injuries
 - Fractures/Sprains/Tendon Subluxation
 - Overuse Injuries
 - Stress Fractures/OCD
 - Tendonitis/Apophysitis

Developmental Problems

- Pes Planus
 - Flat foot common in children until age 6
 - Said to be “flexible” if arch reconstitutes when the child stands on their toes
 - Reported in up to 15% of the population
 - For athletes who are symptomatic an arch support to prevent excessive pronation is often helpful

Developmental Problems

- Tarsal Coalition
 - Fibrous, cartilaginous, or bony connection of two (or more) bones in the midfoot or hindfoot with presentation common during adolescence
 - Most are bilateral, but is reported to occur in <1% of the population
 - Most common are calcaneonavicular and talocalcaneal
 - Present with a history of multiple ankle sprains and vague pain that is insidious in onset

Tarsal Coalition

- Symptoms typically begin or are exacerbated during athletic training. Hence, a high occurrence is encountered in the young athlete
 - PE will show limited subtalar motion
 - Generally seen on plain radiographs
 - C sign for talocalcaneal
 - Oblique view for calcaneonavicular
 - CT scan for perioperative planning

Disclosures

Grant Hogue, M.D., has no financial relationships to disclose.

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Tarsal Coalition – Treatment
- Conservative management with orthotics and temporary immobilization is often successful
- Resection may be necessary for recalcitrant cases in order to restore mobility and decrease pain
- Not necessary to wait until skeletal maturity for resection

Developmental Problems- Adolescent Bunion
- Most common in female dancers
- Initial treatment includes wider shoes, bunion pads, orthotics
- If pain persists then boney realignment is necessary with osteotomy choices similar to the adult population
- Simple bunionectomy has an exceedingly low success rate

Accessory Ossicles
- **Os Trigonum**
 - Posterior talus has a separate ossification center that generally ossifies and fuses 1 yr after appearance (8-10 girls, 11-13 boys)
 - If fusion does not occur an os trigonum is formed
 - Present in ~10% of the population and generally asymptomatic
 - Can become symptomatic in athletes who actively plantarflex their ankle — ballet, gymnastics, ice skaters, occ soccer players

Os Trigonum
- Will present with posterolateral ankle pain secondary to posterior impingment between the tibia and calcaneus
- Repetitive impingment can also cause hypertrophic capsulitis
- Pain reproduced with plantarflexion on exam
- If patient has concurrent posteromedial pain then a concurrent FHL tendonitis should be suspected

Os Trigonum
- Sports
 - Dance
 - Gymnastics
 - Competitive cheering
 - Martial arts

Os Trigonum - Treatment
- Rest, NSAIDs, avoidance, PT, BUT pain usually returns once sporting is resumed. Especially with ballet dancers
- Resection often necessary in the competitive young athlete
- Medial or lateral approach to the posterior ankle
 - Use medial approach if addressing concurrent FHL tendonitis

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Accessory Ossicles- Accessory Navicular

- Most common accessory bone in the foot and occurs on the medial, plantar border of the navicular
- Insertion site of posterior tib tendon
- Reported in 4-14% of the population but <1% symptomatic
- Present in the adolescent athlete due to pressure over the bony prominence, tear in the synchondrosis, or posterior tib tendonitis

Accessory Navicular- Treatment

- Conservative tx with orthotics and trial of casting is usually quite successful however resection is necessary in recalcitrant cases
- After resection/excision it is important to repair posterior tib insertion on the navicular proper

Accessory Ossicles- Medial Malleolus Ossification Center/Os subtibiale

- Medial Malleolus ossification center appears b/t 1-2 yrs of age and fuses by age 11-12
- Persistence into adulthood is uncommon, but can be a source of pain from microtrauma at the chondro-osseous jxn in young athletes

Os subtibiale -Tx

Usually unites
Traumatic vs. developmental
- Can become symptomatic after trauma or repetitive use
Treatment:
 - Rest, time
 - Rarely more
- Micheli: rest x 3 weeks → cast x 3 weeks → re cast → scope excision

Os subtibiale

Arthroscopic resection
- Accessory portal

Arthroscopic resection
- Pre-op
- Post-op

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Acute Injuries- Physeal Fractures

- Distal tibial and fibular physes form a "plane of weakness" about the ankle
- Ligaments often stronger than physeal cartilage leading to increased risk of physeal injury over ligamentous sprain
- Goldberg: 31/53 fractures of the distal tibial physis occurred during sporting activity

Physeal Closure

Distal tibia physis closes:
- About age 12-15 yrs girls
- About age 13-17 yrs boys

Medial malleolus extension appears ~ 10 yrs
Asymmetric closure over ~ 18 months
- Tibia physis closes in center first then medially and posteriorly.
- Anterolateral portion of physis is the last to close
Closure of the distal fibula physis follows distal tibia physeal closure by ~12-24 months

Distal Tibial Physeal Closure

Age / Fracture Pattern

Classification Anatomic

- Salter-Harris
 - High interobserver correlation
 - Correlated with outcomes
 - Higher number correlates with greater chance of growth disturbance

Classification - Ankle Fractures; Dias-Tachdjian

Mechanism of injury:
- Supination-Inversion
- Pronation-Eversion
- External Rotation
- Supination-Plantar-Flexion
- Supination-External Rotation

This presentation is the intellectual property of the author.
Contact them for permission to reprint and/or distribute.
13yo M SH IV of tibia, SH I of fibula

Football injury. Supination-inversion type. Attempted to practice for 2 DAYS before seeing a physician.

“transitional fractures”

- Triplane and tillaux
 - Triplane
 - Fracture appears to be in multiple planes
 - Tillaux
 - Fracture of the anterolateral epiphysis

Triplane Fractures

Combination of Salter II and III fractures: usually near end of growth (Complex type IV fracture)

Anterior epiphyseal fracture with large posteromedial metaphyseal fragment...fibula may also be fractured

Triplane Fractures

Displaced Triplane Fractures (>2 mm)
- Anatomic reduction required
- If closed reduction successful
 - Cast: consider a long leg cast with 30° of knee flexion and foot internally rotated, if unstable
 - If closed reduction unsuccessful => ORIF
- Reduction/Internal fixation done in step-wise fashion with small fragment or 4.0 cannulated screws
- Postop - SLC x 3-4 wks, then SLWC x 3 wks

Adequate Imaging Helps

CT gives 3D visualization of fracture patterns
Essential for planning

Triplane Fracture

Surgical Correction

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
“Transitional” Fractures

Juvenile Tillaux fractures
- Patients tend to be older than those with triplane fx
- Fibula prevents marked displacement: may be subtle
- Local tenderness at anterolateral joint line
- Mortise view essential
- May need CT scan
- Although literature based on small series, excellent results with anatomic reduction noted

Tillaux Fracture Example

CT shows a Salter III (“Tillaux”) fracture of the distal tibia
- Tillaux fractures occur near the end of growth as medial portion of distal tibial physis closes before the lateral side closes

Tillaux Fractures Treatment

Non-displaced
- Cast (NWB) x 3 wks, then SLWC x 3-4 wks
- CT scan after cast placement may be needed to assure no displacement
- Radiographs in cast to assure no re-displacement in cast
- Follow-up x-rays obtained every 6-12 months for 2 to 3 yrs to assess for growth arrest

Tillaux Fractures Treatment

Displaced (>2mm) Tillaux fxs
- Anatomic reduction required
- If closed reduction achieved
 - Long leg cast with knee flexed 30 degrees and foot internally rotated if unstable
- If closed reduction unsuccessful
 - Attempt closed reduction under anesthesia
 - If still unsuccessful, may use k-wires to joystick Tillaux fragment (percutaneously or open)
 - Fixation with small fragment or 4.0 cannulated screws
- Postop - SLC x 3-4 wks, then SLWC x 3 wks

Tillaux Fracture Example

Child with ankle pain:
- Fracture difficult to see

Tillaux Fracture Example

Post-operative and healed x-rays after hardware removal: no residual deformity
Sprains
- Ankle sprains reported to make up as much as 25% of athletic injuries
- High grade ankle sprains unusual in the skeletally immature (ligament stronger than bone/physis)
- Physisal fracture until proven otherwise
- Most common is similar to adults
 - Inversion-plantarflexion with sprain of the ATFL and calcaneofibular ligaments
- These lower grade ankle sprains respond well to conservative mgmt with treatment mimicking adults models

Treatment options
- Ankle sprains:
 - Non-operative care
 - RICE
 - Rest
 - Ice
 - Compression
 - Elevation
 - Immobilization
 - Lace-up ankle brace
 - Stirrup brace
 - Fracture-boot
 - Possibly more recurrence than lace-up brace
 - Cast
 - Physical therapy – early

Sprains
- Operative mgmt
 - Surgical techniques
 - Brostrum
 - Direct late repair of lateral ankle ligaments
 - Gould modification of Brostrom
 - Mobilization and reattachment of lateral portion of extensor retinaculum to fibula after imbrication of ATFL and CFL
 - Provides additional stability
 - Gold standard – 85-95% successful
 - Modified brostrum + Split Evans
 - Augment brostrum repair with anterior 1/3 slip of PB (gard, FAI 1999)

Peroneal Tendon Subluxation
- Uncommon but potentially disabling in young athletes
- Often overlooked as a cause of persistent lateral ankle pain after trauma
- Among reported cases in the skeletally immature >90% are the result of athletics
- Skiing, skating, basketball, soccer, football

Peroneal tendon instability
- Superior peroneal retinaculum

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Peroneal tendon instability

Mechanism
- Ankle dorsiflexed
- Hindfoot everted

Acute presentation:
- Very similar to lateral ankle sprain

Chronic presentation
- Visible
- Audible Snap
- Palpable snap

Peroneal tendon instability

Non-operative Care
- Recognize the acute injury
- Immobilize
- Therapy
- 50% successful?

Surgery
- Repair
- Reconstruction

Ferran et al. Sport Med 2006

Peroneal tendon instability

Anatomic repair
- Deepen peroneal groove
 - If growth plate closed

Oliva, F Bull Hosp Joint Dis 2006

Peroneal tendon instability

Pediatric reconstruction:
- Modified Chrisman-Snook
 - Split peroneus brevis
 - Through the epiphysis
 - Into the calcaneus

Forman & Micheli. Foot & Ankle. 2000

Overuse Injuries

- Repetitive, un repaired microtrauma manifests as “overuse” injuries
- In the growing athlete the bones may grow more swiftly than the muscle-tendon units, resulting in poor flexibility and overuse injuries
- Stress fractures, tendonitis, muscle strains, and apophysitis all have a common denominator: the structure involved is stressed beyond the limits of its ability to repair.

Overuse Injuries - Stress Fractures

- Present with mechanical pain that increases with activity and decreases with rest
- Risk factors
 - Female
 - Caucasian
 - Sudden increase in training intensity
 - Menstrual irregularity
 - Tibia vara and dec hip ROM
 - Tibia, femoral neck, distal fibula, calcaneus, and metatarsals

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Overuse Injuries- Stress Fractures

- **Diagnosis**
 - Clinical diagnosis backed up with advanced imaging
 - MRI or Bone Scan
- **Treatment**
 - Conservative mgmt is the mainstay of treatment
 - Rest and immobilization as needed

Overuse Injuries- Tendonitis

- **Overuse tendonitis occurs in the tendons spanning the ankle joint for several reasons**
 - Training errors
 - Imbalance
 - Footwear
 - Growth spurt
 - Sudden increase in training intensity
- **Most common**
 - FHL
 - Peroneals
 - Achilles

Sever’s disease/Aphophysitis

- **Calcaneal apophysitis**
 - 8% of all overuse injuries in children and adolescents
 - Typically 8-12 yo
 - Open apophysis required
- **Sever’s disease**
 - 8% of all overuse injuries in children and adolescents
 - Typically 8-12 yo
 - Open apophysis required

Sever’s disease

- Typical history
 - Pain brought on by activity
 - Improves with rest, ice, NSAIDs
 - Returns with activity
 - No pain at rest
 - When pain resolves has no pain with weight bearing

Sever’s disease

- Differential diagnosis of heel pain:
 - Calcaneal tumor
 - Benign and malignant
 - Calcaneal stress fracture

- Radiographs
 - Pain with weight bearing
 - Parent’s request
 - Findings: nothing
 - Sclerosis and fragmentation vs. normal development of the apophysis

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Sever’s disease

Treatment
- Rest, ice, NSAIDs
- Activity modification
- Achilles tendon stretching
- Pad the shoe cleat
- Temporary use of heel cups if desperate
- Tuli’s heel cups
- Tuli’s cheetahs

Have to get serious to improve the pain
- Many wait to finish the season

Recurrence possible/common until skeletally mature

Osteochondral Lesion of the Talus (OLT)

- Osteochondritis dissecans (OCD) of the talus
- Injury to the surface of the talus
- Cartilage and subchondral bone
- Conservative treatment not very successful
- Prolonged
- Risks cartilage

Osteochondral Lesion of the Talus (OLT)

Medial (70%)
- 64% trauma
- Deep
- Posterior
- Plantarflexion, inversion, ER

Lateral (20%)
- 100% trauma
- Shallow/wafer
- Anterior
- Dorsiflexion, inversion, IR

Osteochondral Lesion of the Talus (OLT)

Berndt and Hardy Classification

OCD

Keep it simple

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Osteochondral Lesion of the Talus (OLT)

Cartilage surface intact
 • Retroarticular drilling

6 weeks post-op

Osteochondral Lesion of the Talus (OLT)

Cartilage NOT intact
 • Debridement
 • Marrow stimulation (microfracture)

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Osteochondral Lesion of the Talus (OLT)

Cartilage NOT intact
• Debridement
• Marrow stimulation (microfracture)

18 months post-op

Acknowledgments

John Faust
Kaye Wilkins
Lyle Micheli
Yi-Meng (Beng) Yen
Dennis Kramer

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.