Diabetes in the Athlete

Objectives

• Differentiate the types of diabetes mellitus
• Understand the benefits of exercise in patients with diabetes mellitus
• Prevent, recognize, and treat hyperglycemia in diabetic athletes
• Prevent, recognize, and treat hypoglycemia in diabetic athletes
• Anticipate and prevent late onset hypoglycemia

Disclosures

• I have none

Diabetes Mellitus

• Most common metabolic disease in the US
• Characterized by hyperglycemia
• Falls into 2 categories
 • Type 1 – absence of insulin secretion
 • Type 2 – insulin resistance and inadequate compensatory secretion

Type I Diabetes Mellitus

• Usually diagnosed in children and young adults
• 5% of diabetics
• Insulin is not produced due to pancreatic beta cell destruction
• Results in hyperglycemia, increased thirst and urination, fatigue, and weight loss
• Prone to develop ketoacidosis

Type 2 Diabetes Mellitus

• Usually diagnosed in adults, but incidence in younger patients is increasing
• Begins with insulin resistance resulting in increased insulin secretion
• Over time the pancreas is unable to produce adequate insulin to maintain normal blood glucose
• Results in hyperglycemia, asymptomatic initially
• Less likely to develop ketoacidosis
Benefits of Exercise
- Increased insulin sensitivity
- Augments glucose transport
- Reduction in cardiovascular risk factors
 - Decreased blood pressure
 - Decreased total cholesterol, LDL, and triglycerides
 - Increased HDL
- Improved self-esteem

Medical Clearance
- A stress test is warranted in diabetics:
 - Older than 40 years
 - Older than 30 years old and:
 - Diabetes greater than 10 years duration
 - Presence of additional cardiovascular risk factors
 - Peripheral vascular disease
 - Neuropathy
 - Smoker

Hypoglycemia
- Blood glucose below 70 mg/dL
- Symptoms include headache, hunger, sweating, anxiety, tremor, dizziness, tachycardia or palpitations
- Frequent hypoglycemia promotes unawareness resulting from an attenuated epinephrine response
- Blood glucose below 40 mg/dL can cause the athlete to be combative, severely obtunded, or unconscious

Hyperglycemia
- Fasting blood glucose above 126 mg/dL
- Random blood glucose greater than 200 mg/dL
- Can be asymptomatic
- Symptoms include excessive thirst, dry mouth, headache, fatigue, nausea/vomiting, blurry vision, confusion

Exercise
- Blood glucose should be well controlled before starting an exercise program
- Blood glucose should be monitored before, during, and after exercise
- If blood glucose exceeds 300 mg/dL prior to exercise, it tends to increase rather than fall during exercise
 - More likely in athletes using insulin or insulin secretagogues
- If ketones are present prior to exercise, they tend to increase during exercise

Typical Response to Exercise
- Aerobic exercise elicits glycolysis, lipolysis, and gluconeogenesis
 - Increases serum glucose
- Insulin and insulin like growth factor increase
 - Drives glucose into the muscles for consumption
- Feedback mechanisms maintain blood glucose
Diabetic Response to Exercise

- Impaired gluconeogenesis
- Less glucose available
- Increased insulin sensitivity
- Can persist for 4–28 hours after exercise
- Insulin levels can remain elevated
- Decreases serum glucose
- Impaired feedback mechanisms (insulin regulated)
- Hypoglycemia can result

Diabetic Response to Exercise

- Depends on several factors:
 - Intensity and duration of exercise
 - Baseline glucose control
 - Type of medication
 - Insulin or insulin secretagogues
 - Site of insulin injection
 - Meal prior to exercise

Hyperglycemia and Exercise

- Pregame anxiety can mimic hypoglycemia
- This may lead to increased carbohydrate intake or reduced dosage of medication leading to hyperglycemia
- If blood glucose is < 300 mg/dL, and no ketones are present the athlete may participate with close glucose monitoring
- If blood glucose is > 250 mg/dL and ketones are present, or > 300 mg/dL the athlete should not be allowed to participate

Hypoglycemia and Exercise

- More likely during exercise in the evening due to variation in cortisol and growth hormone levels
- Reduce insulin/insulin secretagogues prior to exercise based on duration
 - If exercise is less than 1 hour – 30% reduction
 - If exercise is 1–2 hours – 40% reduction
 - If exercise is 2 hours or more – 50% reduction

Hypoglycemia and Exercise

- Carbohydrate intake should be based on blood sugar prior to exercise
 - If blood glucose is below 120 mg/dL – consume 15 g of carbohydrate prior to exercise, then 30 grams per hour of exercise
 - If blood glucose is 120–180 mg/dL – consume 30 grams of carbohydrate per hour of exercise
 - If blood glucose is 180–250 mg/dL – consume no carbohydrates and monitor blood glucose during exercise

Hypoglycemia and Exercise

- If hypoglycemia develops
 - Treat with easily digested carbohydrates if the athlete is conscious (sugar, honey, candy, glucose tablets, sports drinks)
 - Use intramuscular glucagon if the athlete cannot protect the airway (short acting – continue to monitor and encourage carbohydrates when improved)

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Late Onset Hypoglycemia

- Can occur 2-72 hours after exercise
- Increased insulin sensitivity can persist for 4-28 hours after exercise
- More likely in athletes using insulin or insulin secretagogues
- Increase caloric intake for 12-24 hours following exercise (replenishment meal – 1.5 gm carbohydrate per kg body weight)
- Avoid evening exercise if possible
- Monitor nighttime blood glucose to avoid nocturnal hypoglycemia

Be Prepared

- The athlete, coaches, and trainers should know the symptoms and treatment steps
- Glucose and ketone measurement equipment should be accessible
- Easily digested carbohydrates should be readily available
- A glucagon kit should be available

Thank you!