UPDATES IN REGENERATIVE MEDICINE

Objectives
1. Biology of Platelet Rich Plasma (PRP)/Mesenchymal Stem Cells (MSC) and rationale for their use
2. Inherent variables in PRP/MSC use
3. Clinical applications of PRP/MSC in musculoskeletal medicine
4. Review relevant PRP/MSC research

Musculoskeletal Medicine
- MSK injuries leading cause of disability and pain
- Increasing prevalence
- Increase healthcare costs
- Decrease productivity and quality of life

Platelet Rich Plasma
- Google hits
 - 2011=461,000
 - 2015=~2,000,000
- > 7800 references for PRP
- > 500 new pub med references in 2015 alone

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Regenerative Medicine

Regenerative medicine has been called the "next evolution of medical treatments," by the U.S. Department of Health and Human Services. With its potential to heal, this new field of science is expected to revolutionize health care.

Mesenchymal Stem Cells

- BMAC~5-6x increase vs Adipose
- Trophic Effects (Drugstore?)
 - Cytokines, chemokines, GF
 - Angiogenesis, mitosis, anti-scarring, anti-apoptotic
- Local Modulation
 - Anti-inflammatory
 - Immunomodulatory
 - Anti-microbial

No Quick Fix for Tendon Healing

Connective Tissue Insufficiency

Platelet Rich Plasma

- >4x baseline concentrations
- Growth factors
 - Cell proliferation, tissue growth
- Cytokines
 - Intercellular interactions
- Chemokines
 - Attract stem cells and macrophages

Stem Cell Differentiation

Why Is the Literature Confusing?

- PRP-Stem Cell variables
- Biology of healing
- Micro-environment of injury site
- What's the real diagnosis?
 - Effects of biotensegrity and biomechanical disruptions
The PRP-Stem Cell Variables

- Patient
- Equipment / Processing
- Cell counts
 - PRP, MSC
 - RBC, WBC’s +/-
 - Dose, Frequency
- Activation +/-
- Other medications

The Variables

PRP Variables

<table>
<thead>
<tr>
<th>Harvest</th>
<th>Biomet GPS</th>
<th>Arthrex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biomet GPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomet GPS</td>
<td>Arthrex</td>
</tr>
<tr>
<td></td>
<td>Biomet GPS</td>
<td>Arthrex</td>
</tr>
<tr>
<td>Prp</td>
<td>Biomet GPS</td>
<td>Arthrex</td>
</tr>
</tbody>
</table>

Comparison of Growth Factor and Platelet Concentration From Commercial Platelet-Rich Plasma Separation Systems

Tiffany A. Castillo, Michael A. Poulton, MD, Hyun-Joo Kim, PhD, and Jason L. Dragoo, MD
Investigation performed at Stanford University, Department of Orthopaedic Surgery
Palo Alto, California

Growth Factor and Catabolic Cytokine Concentrations Are Influenced by the Cellular Composition of Platelet-Rich Plasma

Emily A. Sandman, Brian J. Cole, MD, MBA, and Lisa A. Fortier, PhD, DVM, PhD
Investigation performed at Cornell University, Ithaca, New York

PRP Variables

Patient Platelet Count

<table>
<thead>
<tr>
<th>Patient A</th>
<th>Patient B</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 x 10^3</td>
<td>350 x 10^3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRP System 2X</th>
<th>PRP System 2X</th>
</tr>
</thead>
<tbody>
<tr>
<td>300,000</td>
<td>700,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRP System 5X</th>
<th>PRP System 5X</th>
</tr>
</thead>
<tbody>
<tr>
<td>750,000</td>
<td>1,750,000</td>
</tr>
</tbody>
</table>

Corticosteroids and Anesthetics

This presentation is the intellectual property of the author.
Contact them for permission to reprint and/or distribute.
The Biologic Variables

- Microenvironment / healing response
 - Tendinopathy: degenerative, ineffective healing cascade
 - Osteoarthritis: increased catabolic activity, subchondral bone and cartilage injury
 - Mechanism: Conductor vs Orchestra
- Do all tissues respond the same to treatment?

Other Variables

- Patient
 - Immune system
 - Lifestyle/Nutrition issues
- Rehabilitation methods
- Biotensegrity
 - Soft tissue integrity
 - Bone/joint integrity
 - Biomechanical integrity

Customize Formulations for Specific Indications

- Indications
 - Pro- or anti-inflammatory
 - Target: tendinopathy, OA joint, Subchondral bone?
 - Acute injuries
- Cells and Bioactive Factors
- Activation
- Dose, frequency

Mechanical Treatment Goals

- Muscular/Myofascial
- Neural
 - Hydrodissection
- Tendon
 - Peri- or Intra-tendinous
 - Enthesis
- Joint
 - Intra-articular
 - Intra-osseous
 - Peri-articular

PRP Classification

<table>
<thead>
<tr>
<th>Type</th>
<th>WBC’s</th>
<th>Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[increased]</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>[increased]</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Minimal to none</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Minimal to none</td>
<td>Yes</td>
</tr>
<tr>
<td>Type A:</td>
<td>>5x [Platelets]</td>
<td></td>
</tr>
<tr>
<td>Type B:</td>
<td><5x [Platelets]</td>
<td></td>
</tr>
</tbody>
</table>

PRP type is likely to affect tissue healing differently.

Indications for PRP and MSC’s

- Any chronic tendon, ligament or joint injury with pain
 - Accessible to injection therapy
 - failed appropriate conservative management
 - Patient is not interested, poor candidate for surgery
- Subacute / chronic muscle injuries
- Facilitate healing post-op

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
PRP and MSC Treatments

- Common conditions treated
 - Tendons, ligaments, joints
- Cost
- Post-injection care
- Adverse reactions
 - High safety profile

Summary: PRP / MSC Studies

- Tendinopathies
 - Yes
 - Shoulder, elbow, hip, knee, ankle, foot
- Knee, ankle OA, cartilage damage
 - Getting stronger
- Hip OA
 - Working on it

PRP vs Standard of Care

- PRP vs cortisone
 - AJSM 2010-Gosens et al; PRP vs cortisone: Chronic lateral epicondylitis, RCT
 - Foot Ankle Int. 2014-Monto RR. PRP vs cortisone: Chronic plantar fasciitis

PRP and Stem Cell Studies

- Lateral epicondylitis
- Rotator cuff tendinosis
- Patellar tendinosis
- Achilles tendinosis
- Plantar fasciitis
- Knee and Hip OA
- Lumbar disc disease
- Non-union of long bones

PRP vs Standard of Care

- PRP vs cortisone
 - AJSM 2010-Gosens et al; PRP vs cortisone: Chronic lateral epicondylitis, RCT
 - Foot Ankle Int. 2014-Monto RR. PRP vs cortisone: Chronic plantar fasciitis

Bone Marrow vs. Adipose Stem Cells

- Pain and donor site morbidities
- Cell number and activity with aging, quantity
- MSC yield (NC/G)
 - Bone marrow: 30,000
 - Adipose: 1,000,000 (500 X)
- FDA regulation

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Stem Cell Research

PRP + Stem Cells

- ADSC w/ PRP s/p AKS
 - 87% maintained or improved cartilage status w/ 2nd look arthroscopy at 2 years
 - Knee Surg Sport Trauma, 2013 Koh et al

Stem Cell Studies

- MRI comparison of control scaffold, PRP and BMAC treatment for cartilage defects
 - BMAC>PRP>Control
 - *AJSM PreView*, Nov 16, 2015; Krych, A.

Where are We Headed?

- What we know
- What we don’t know

PRP + MSC’s

- PRP + MSC Synergy
 - Enhances stem cell and fibroblast proliferation
 - Inflammation
 - Anti-microbial
 - Angiogenic

Thank you

www.drZmd.com
amzsportsmd@msn.com
Tendon and Ligament Healing

Rat Model:
- 8-10 days: Inflammatory phase is evident
- 1-12 weeks: Collagen synthesis, cross-linking
- 8 weeks: Collagen begins to align longitudinally
- 3 weeks – 1 year: Collagen remodeling

(Greenley TK, 1971)

There is no "quick fix" for tendon healing

Stem Cell Differentiation

Use of Corticosteroids and Anesthetics

Corticosteroids and Local Anesthetics Decrease Positive Effects of Platelet-Rich Plasma: An In Vitro Study on Human Tendon Cells

Human tenocytes cultured in PRP alone, or in combination with corticosteroids and/or anesthetics (lidocaine, bupivacaine)
Biologic Treatment Goals

- Tendinopathy
 - Degenerative tissue with ineffective healing cascade
- Osteoarthritis
 - Increased catabolic activity, subchondral bone injury, cartilage destruction
- Pro- or Anti-inflammatory PRP?

Disruption of Biotensegrity

Mechanical Treatment Goals

- Tendon
 - Peri- or Intra-tendinous
 - Enthesal
- Joint
 - Intra-articular
 - Intra-osseous
 - Peri-articular
- Muscular/Myofascial
- Neural
 - Hydrodissection

Common Conditions Treated

- Tendon, Ligaments, Muscles
 - Tendinosis/partial tears,
 - Rotator cuff, Tennis elbow, Patellar, Achilles, Peroneal, Plantar fasciosis
 - Knee MCL / LCL sprain, Elbow UCL sprain
 - Chronic muscle strain injuries
- OA
 - Hip, Knee, Ankle
PRP and MSC Treatments

- Common conditions treated
 - Tendons, ligaments, joints
- Cost
- Post-injection care
- Adverse reactions
 - High safety profile

Adverse reactions

- Pain during and after injection
 - Brief immobilization (24-72 hours) helps
- May require short term narcotics
 - AVOID NSAIDs pre-, post-injection
- High safety profile
 - No adverse events reported

PRP Cost

- ~$1000-$2000 with/without U/S guidance
 - Kits cost $250, Facility, Professional charges
- Coding: PRP CPT Code = 0232T
- Not universally covered by insurers
 - Prior authorization process in place
 - Worker’s Compensation views favorably in some states

PRP Studies-Summary

- Tendinopathies
 - Yes
 - Shoulder, elbow, hip, knee, ankle, foot
- Knee OA
 - Better
- Hip OA
 - Working on it

Mesenchymal Stem Cell Studies-Summary

- Tendinopathies
 - Yes
 - Shoulder, elbow, hip, knee, ankle, foot
- Knee OA
 - Getting stronger
- Hip OA
 - Working on it

PRP Post-injection Care:

- Brief (72 hr) period of immobilization/protection, early AROM
- Avoid NSAIDs x 2 weeks
 - Ice, Acetaminophen o.k.
- Begin progressive PT program within 2 weeks of injection
- Low intensity tendon loading for first 6-8 weeks, then activity as tolerated
PRP vs. Steroid for Lateral Epicondylosis

- Randomized Controlled Trial; Level 1
- PRP (n=51) vs. Corticosteroid (n=49)
 - Single injection
 - DASH Scores and VAS scores
- Results
 - Success = >25% ↓ in VAS or DASH, no re-Tx
 - 73% PRP vs 49% Steroid (p<.001)
 - Corticosteroid – better initially then declined
 - PRP – progressive improvement to 1 year

Peerbooms JC, et al. AJSM, 2010 38:255

PRP – Plantar Fasciosis

Case Series
9 patients with PF, PRP injection
77.9% complete symptom resolution at 1 year

Case Series
14 patients with PF, PRP injections, 1 year follow-up
Mean Pain VAS decreased from 7.1 to 1.9

Prospective Cohort
25 patients with PF, PRP injection, 10 month follow-up
Mean Pain VAS decreased from 9.1 to 1.6

PRP Research

PRP for Chronic Midportion Achilles Tendinosis

- Randomized Controlled Trial, Level 1
- PRP (n=27) vs. Saline Control (n=27)
 - Both groups performed eccentric exercises
 - 24 week follow-up, VISA-A scores
- Results
 - Both groups improved, PRP not superior
 - VISA-A improvement (12 pts = C.I.D.)
 - PRP 21.7 vs Saline 20.5 (NS)

De Vos, et al. JAMA 2010, 303(2):144

Positive outcomes
- Filardo et al 2012, RCT, level 2
- Spakova 2012, RCT
- Patel, Dhillion et al 2013, RCT, level 2
- Wang-Saegusa, 2011, Case series
- Jang et al, 2012, case series
- Filardo et al, 2011, Case series
- Sanchez et al, 2012, RCT, level 4 (Hip)
- Multiple Case reports, level 4
- Demonstrate safety of PRP

No effects of PRP on ultrasonographic tendon structure and neovascularisation in chronic midportion Achilles tendinopathy

• Randomized Controlled Trial, Level 1
• PRP (n=27) vs. Saline Control (n=27)
• 6, 12, 24 week follow-up with Ultrasound
 - No difference in ultrasonographic appearance of tendons b/w groups at final follow-up: both improved (p=0.169)
 - No difference in US echo., neovessels at any time point.
PRP for Patellar Tendinopathy s/p ACL Reconstruction

Participants: 11 patients (9 females, 2 males) following an ACL reconstruction utilizing a patellar tendon autograft
- 9 Females, 2 Males
- Average age = 19 ± 2.19 yrs
- Average Timing of Injection = 34.8 ± 17.1 weeks s/p ACLR
- All failed PT, NSAIDs, rest, iontophoresis

Outcomes: Paired differences of IKDC scores (pre-injection to post-injection) for each patient assessed with the Wilcoxon Signed-Rank Test (p≤0.05) and reported as the median (inter-quartile ranges [IQR]: 25th and 75th).

Baseline (median, IQR) Post-Injection (median, IQR) Significance
IKDC 48.3 [44.3,60.3] 74.7 [52.9,82.8] p=0.02

PRP for Non-Union of Long Bones

60 Patients with > 6 months of non-union
- 42/60 s/p ORIF, all with >90% fracture fragment contact
 - Tibia (n=35), Femur (n=15), Humerus (n=5), Radius (n=5)
 - Injected with 20-30 mL PRP at site of fx non-union
 - Radiographs: 8, 12, 16, 20, 24 weeks

Results
- 55/60 with callus formation at week 8
 - 40/55 with bridging trabeculae at week 12
 - All received PRP within 2-4 months of non-union dx
- 5/60 non-union (2-tibia, 2-femur, 1-radius)
 - All received PRP > 12 months since non-union dx

Kumar, et al. AAOS, 2012

PRP for Lumbar Spinal Fusion

Early results have been Mixed
RCT, Level 1
- 40 subjects, Posterior stabilization was achieved with pedicle screws and interbody fusion was attempted with carbon cages filled with autologous bone +/- PRP
- CT Scans at 3, 6, 12, 24m

Results
- No significant difference in patient reported outcomes of ODI, SF-36, VAS
- No significant differences in CT Evidence of healing

PRP for Acute Muscle Injury

- Design: Controlled Laboratory
- Methods: Rat tibialis anterior strain
 - PRP, PPP (platelet poor = sham), no Tx
 - Single contraction (large strain) vs. Multiple contraction (small strain) injury
- Outcome: Histology and Contractile force
- Results
 - PRP enhanced recovery from multiple contraction injury
 - No improvement in single contraction injury

Hammond, et al. AJSM 2009

The Biomechanical and Histologic Effects of Platelet-Rich Plasma on Rat Rotator Cuff Repairs

Jennifer Bock, MD,1,2 Douglas Evans, MD,2 Piero M. Testa, MD,2 Bieman Yong, MD,2 and John J. Galasso, PhD
1Department of Orthopedic Surgery, Loyola University Medical Center, Maywood, Illinois
2Joint ARAMIS Study, 2012

- Tendon-from-bone supraspinatus tear
- Immediate trans-osseous repair performed
 - PRP augmented vs control repair
 - Histology / Biomechanics 7d, 14d, 21d

Results
- PRP group - increased fibroblastic response and vascular proliferation, @21d more linear collagen alignment
- No difference in strain to failure loads

Kumar, et al. AAOS, 2012

Effect of Platelet-Rich Plasma on the Biologic Activity of the Human Rotator-Cuff Fibroblasts: A Controlled In Vitro Study

Patrick Selzle,1 Egill Halldorsson1,2 Egill Njálon,1,2 Jónas Kalman,1,2 Rodrigo Balaraman,1,2 Anupar Patel,1,2,3,4
1Department of Orthopaedics, St. Vincent’s Hospital, Melbourne, VIC, Australia
2VITAS Medical Research Laboratory, Melbourne, VIC, Australia
3Department of Surgery, Fairwinds Health, Melbourne, VIC, Australia
4Department of Medicine, University of Melbourne, Melbourne, VIC, Australia

- Rotator cuff fibroblasts cultured 21d with PRP of 3 different concentrations
 - 1x, 5x, 10x (dose-response relationship) vs controls
 - DNA, GAG measurements @ 1, 7, 14, 21 d

Results
- PRP increased (p<0.0001) fibroblast proliferation and elevated GAG and DNA levels.
- 1x and 5x had most profound effects