

Disclosures

• I have none

Objectives

- Understand the risk factors of lower extremity stress fractures
- Understand the pertinent history of stress fractures
- Understand the role of imaging in detecting stress fractures
- Know the common stress fractures of the lower extremity
- Know the treatment options for the fractures

Stress Fractures

- Overuse injury
- Abnormal balance between osteoblast and osteoclast activity
- Occur most often in the lower extremity

Stress Fractures

- Femur
- Tibia
- Fibula
- Calcaneus
- Navicular
- Metatarsals
- Sesamoids

Risk Factors

- Cavus foot
- Long second metatarsal
- Metatarsus adductus
- Amenorrhea
- Hyperthyroidism
- Malnutrition
- Training errors
- Poor footwear

History

- Pain with exertion
 - May progress to pain with daily activities
- Relief with rest
- Training errors
 - Rapid increase in intensity, duration, or frequency
 - No rest day
- Ask about normal menstration in females
- Ask about vitamin deficiencies (vitamin D) or disordered eating

Exam

- Look for abnormal alignment
- Swelling
- Warmth
- Tenderness
- Pain with percussion
- Pain with 3-point stress
- Pain with single leg hop

Imaging

- Standard x-rays
- Bone Scan
- CT
- MR

X-ray

- 320 stress fractures in athletes
 - Pain to onset x-ray changes
 - Weeks to months
 - Average 10 to 21 days
 - Changes in 30-70% of cases

X-ray

- Diaphyseal
 - Cortical
 - Transverse
 - Fracture line followed by callus
 - Example: 5th MT diaphysis

X-ray

- Metaphyseal
 - Cancellous
 - Perpendicular to stress
 - Sclerosis
 - Example: Calcaneus

Bone Scan

- Focal increased activity
- Increased bone turnover
- Sensitive

CT

- Fracture line
- Callus
- Specific
- Radiation

MR

- Increased marrow edema
- Linear decreased signal
- Associated soft tissue swelling or joint effusion
- Sensitive and specific
- No radiation

Treatment

- Confirm diagnosis
 - Differentiate between tension side and compression side in the femoral neck and tibia
 - Clearance prior to important event
- Patient education
- Rest
- Avoid NSAIDs
 - Some evidence that NSAIDs interfere with fracture healing
- Vitamin D replacement if indicated

Treatment

- Immobilization
- Bone stimulation
- Open reduction internal fixation
- Cross-training/rehabilitation
- Gradual return to sport

Femur

- Superior lateral
 - Tension
- Inferior medial
 - Compression

Femur

- Superior lateral
 - Common in runners
 - Insidious onset of anterior thigh or groin pain
 - Physical exam is typically benign
 - Intial x-rays may be negative
 - Non-weightbearing and obtain an MRI to confirm the diagnosis

Femur

- Superior lateral
 - Treatment
 - ORIF with percutaneous screw fixation

Femur

- Inferior medial
 - Common in runners
 - Insidious onset of anterior thigh or groin pain
 - Physical exam is typically benign
 - Intial x-rays may be negative
 - Non-weightbearing and obtain an MRI to confirm the diagnosis

Femur

- Inferior medial
 - Treatment
 - Non-weightbearing on crutches and gradual return to activities for fracture lines less than 50% of the width of the femoral neck
 - ORIF with percutaneous screw fixation for fracture lines greater than 50%

Tibia

- Tibia platuea
- Medial tibial stress syndrome
- Posterior medial tibia stress fracture
 - Compression
- Anterior tibia stress fracture
 - Tension

Tibia

- Tibia platuea
 - Pain and tenderness at The joint line and tibial plateau
 - Often misdiagnosed
 - Meniscus tear
 - Pes anserine bursitis

- Non-weightbearing initially and then cross training and rehabilitation
- Treatment for displaced or depressed fractures is ORIF

Medial Tibial Stress Syndrome

- "Shin splints"
- Pain at the posteromedial border of the tibia
- 15% of all running injuries
- Thought to be a traction periostitis of the posteromedial tibia (attachment of the posterior tibialis, flexor digitorum longus, or soleus muscles)

Medial Tibial Stress Syndrome

- Usually a history of poor conditioning, training errors, or sloped/banked surfaces (excessive foot pronation)
- Exam demonstrates longitudinal tenderness along the posteromedial tibia, also look for valgus hindfoot/pes planus
- X-rays may show cortex irregularity along the posterior tibialis origin
- MRI will show marrow edema in a longitudinal pattern without fracture line

Medial Tibial Stress Syndrome

- Treatment
 - Relative rest (25-75% reduction in training)
 - Stretching
 - Medial posted shoes or orthotics if needed
 - Gradual return to full training
 - Correct training errors

Posterior-medial Tibia Stress Fracture

 Same predisposing factors as MTSS

Posterior-medial Tibia

- History of pain with exertion that is relieved with rest
 - May progress to pain with normal walking
- Exam shows focal tenderness
 - May also see swelling or limp
- X-rays may show periosteal reaction, sclerosis, or fracture line
- MRI will show marrow edema and may show fracture line

Posterior-medial Tibia

- Treatment consists of rest
 - May require non-weightbearing or immobilization initially
 - No impact activities for 6 weeks
 - May cross train during this time
 - Swimming, stationary bike, elliptical
 - Gradual return to training

Anterior Tibia Stress Fracture

- Less common
- "Dreaded black line"
- Increased risk of nonunion
- Focal anterior tenderness on exam
- MRI if needed to confirm

Anterior Tibia

- Treatment
 - Non-weightbearing/Immobilization
 - Up to 4-6 months
 - Possible IM fixation
 - Bone stimulator
 - Cross training
 - Rehabilitation
 - Gradual return to play

Fibula

- Valgus heel/Pronation
- Treatment
 - Rest
 - Cast boot
 - Functional brace
 - Medial posted shoe or insert

Navicular

- Central hypovascular zone
- Risk of AVN or nonunion
- Pain with WB
- Tenderness over the navicular

Navicular

- Treatment
 - Non-displaced
 - Non-weight bearing
 6-8 weeks
 - Cast-boot
 - Motion control insert
 - Bone stimulator
 - Displaced, recalcitrant, sclerotic
 - ORIF
 - Autologous bone graft

Calcaneus

- Tender tuberosity
- Painful squeeze test
- Non-weight bearing
- Cast-boot
- Cushioned heel

Metatarsals 1-4

- 2nd most common
- Risk factors
 - Varus foot
 - Cavus foot
 - Adducted foot
 - Anterior ankle impingement
- Treatment cast boot and protected weightbearing

Metatarsals 1-4

- Tenderness to the metatarsal
- X-rays may be negative initially
- Treatment
 - Cast boot and protected weightbearing
 - Crosstraining
 - Gradual return to training after 6 weeks

5th Metatarsal

- Metaphyseal-diaphyseal junction
- Risk factors
 - Varus heel
 - Cavus foot
 - Adducted foot

Metaphyseal-Diaphsyseal Classification

- Acute (aka Jones fracture)
- Acute-on-chronic
- Chronic (stress fracture)

Imaging- Proximal metaphysealdiaphyseal junction fractures

- Transverse
- Corresponds to the articulation between the fourth and fifth metatarsal base
- Acute
 - Clean, narrow, and distinct fracture line

Imaging- Proximal metaphysealdiaphyseal junction fractures

- Acute-on-chronic fracture
 - acute fracture line over thickened and sclerotic bone

Imaging- Proximal metaphysealdiaphyseal junction fractures

- Chronic
 - Sclerosis
 - Cortical thickening
 - Obliteration of the medullary canal

Imaging

- MR
 - Occult fractures
 - Early stress fractures
 - Intramedullary edema
 - Low signal line confirms a fracture

Treatment- Proximal Metaphyseal-Diaphyseal Fracture

- Potential vascular watershed
- Non-weight bearing
- Short leg cast
- Up to 12 weeks

Complications-Proximal Metaphyseal-Diaphyseal Fractures

- Non-surgical treatment
 - Delayed union
 - Nonunion
 - Malunion
 - Re-fracture

Treatment- Proximal Metaphyseal-Diaphyseal Fracture

- Surgical treatment
 - Treatment failures
 - Healthy, athletic patients
- ORIF
- Percutaneous intramedullary fixation
- Bone graft

Complications-Proximal Metaphyseal-Diaphyseal Fractures

- Surgical treatment
 - Prominent, failed, incarcerated, or painful hardware
 - Sural neuroma

Treatment- Proximal Metaphyseal-Diaphyseal Fracture

- Hindfoot varus
 - Motion control shoe
 - Lateral posted shoe
 - Lateral posted insert
 - Concomitant calcaneal osteotomy

Sesamoid injury

- Sesamoiditis
- · Sesamoid stress fracture
- Tibial sesamoid most commonly affected
- Seen in dancers, runners, basketball, tennis, and cleat sports
- Tenderness at the affected sesamoid, pain with dorsiflexion of the great toe, pain with resisted flexion of the great toe

52

Sesamoid injury

- X-rays may be negative
- MRI can show edema or fracture line
- Treatment
 - Rest
 - · Reduced weight bearing
 - Cast
 - Surgical resection for failed conservative treatment 3+ months
 - Complications: chronic pain,cock up deformity, hallux valgus (tibial) or varus (fibular)

53

Vitamin D and Stress Fractures

- Several military studies associate stress fracture risk with lower vitamin D levels
- One study of showed that a levels of 6.5-26.9 ng/ml (20 ng/ml) had double the risk of those in the 40.2-112.5 (50 ng/ml) range
- Another study supplementing 2000 mg calcium and 800 IU vitamin D showed a 20% reduction in the incidence of stress fractures

54

Who is at risk?

- Limited solar exposure
 - Northern latitudes, indoor athletes, increased clothing and sunscreen use
- Low dietary intake of vitamin D
 - Oily fish
 - Fortified foods such as milk
 - Mushrooms
- · History of stress fracture

Vitamin D Supplements and Dosing

- Recommended daily intake of D3
 - -600-800 IU
 - Some experts believe this should be increased to 1000-2000 IU
 - Maximum tolerable dose is 4000 IU
- · Recommended daily intake of calcium
 - 1200 mg

56

Vitamin D Replacement

- Current recommended level is 40 ng/ml
- D2 50,000 IU weekly for 8 weeks
 -<30ng/ml will require a second round
- D3 1,000 IU daily for every 10ng/ml short for 6 weeks
- Repeat level after course

Thank you!

- Levy J: Stress fractures of the first metatarsal. Am J Roentgenol 130:679-681, 1978.
- Mosekilde, L. Vitamin D and the Elderly. Clinical Endocrinology. 2005;62(3):265-281
- McKeag DB, Moeller JL. ACSM's Primary Care Sports Medicine 2nd ed. Philadelphia 2007.

58

Thank you!

- Baxter DE, Zingas C: J Am Acad Orthop Surg 3(3):136-145, 1995
- Bennell KL, Malcolm SA, Thomas SA, et al: Am J Sports Med 24:810-818, 1996
- Matheson G, Clement D, McKenzie D, et al: Scintigraphic uptake of ^{99m}Tc at non-painful sites in athletes with stress fractures. The concept of bone strain. Sports Med 4(1):65-75, 1987

59

Thank you!

 Lappe, J., Cullen, D., Haynatzki, G., Recker, R., Ahlf, R. and Thompson, K. (2008), Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits. J Bone Miner Res, 23: 741–749. doi: 10.1359/jbmr.080102

60

