THE FEMALE ATHLETE
Shaylon Rettig, MD, MBA

OBJECTIVES

• Anatomic and physiologic gender differences and their impact on sport
• Nutritional concerns in females and its effect on menstruation and bone density
• Musculoskeletal injuries common to females

TITLE IX

• Title IX of the Educational Assistance Act of 1972 required institutions receiving federal money to offer equal opportunities to both males and females in all programs including athletics

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
TITLE IX
NCAA DII

BENEFITS OF EXERCISE AND ATHLETIC PARTICIPATION
- Improves self-confidence, self-esteem and self-image
- Increases leadership skill and team-building skills
- Increases bone marrow density, cardiovascular fitness and muscle tone
- Decreases incidence of medical conditions
- Young women more likely to graduate and better able to deal with success and failure
- Less likely to smoke, drink alcohol, use drugs, become pregnant

ANATOMIC AND PHYSIOLOGIC GENDER DIFFERENCES

<table>
<thead>
<tr>
<th>Oxygen pulse (efficiency of cardiorespiratory system)</th>
<th>Boys have advantage in aerobic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo2 max (reflects level of aerobic fitness)</td>
<td>Boys have great aerobic fitness</td>
</tr>
<tr>
<td>Estrogen (higher in females)</td>
<td>Unknown whether related to increase in ligament laxity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls have lower center of gravity-improved balance; increase knee valgus; Different running gait</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heart size and volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke volume is less; Increased HR for given submaximal cardiac output; Cardiac output is 30% less</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemoglobin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen carrying capacity is greater in boys</td>
</tr>
</tbody>
</table>
ANATOMIC AND PHYSIOLOGIC GENDER DIFFERENCES

- Women move differently than men
- They jump, land and pivot in more upright position
- Land with femoral internal rotation, apparent knee valgus and foot pronation (ACL, patellofemoral)
- Conditioning drills need to address these differences

NUTRITION

- One of the primary nutritional concerns for the female athlete is inadequate dietary intake resulting in inadequate energy for sports as well as deficiencies in iron, calcium, Vitamin D and other nutritional needs

NUTRITION

- Athletes in esthetic sports (e.g. ballet, gymnastics, skating, long distance running) appear to be most at risk
- In one study, dancers dietary intake was less than 70% of the recommended daily intake
- Not uncommon for female athletes to either fast, skip meals or consume low-fat/caloric meals
- Some ultimately develop eating disorders

CALCIUM

<table>
<thead>
<tr>
<th>Age Group (yr)</th>
<th>Suggested intake (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>500</td>
</tr>
<tr>
<td>4-8</td>
<td>800</td>
</tr>
<tr>
<td>9-18</td>
<td>1300</td>
</tr>
<tr>
<td>19-50</td>
<td>1000</td>
</tr>
<tr>
<td>51-70</td>
<td>1200</td>
</tr>
<tr>
<td>>70</td>
<td>1200</td>
</tr>
<tr>
<td>Amenorrheic athletes</td>
<td>1500</td>
</tr>
<tr>
<td>Pregnant and lactating</td>
<td>1500</td>
</tr>
</tbody>
</table>
Calcium

<table>
<thead>
<tr>
<th>Food</th>
<th>Calcium Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mac and Cheese</td>
<td>360 mg/cup</td>
</tr>
<tr>
<td>Whole Milk</td>
<td>300 mg/cup</td>
</tr>
<tr>
<td>Yogurt</td>
<td>270-350 mg/cup</td>
</tr>
<tr>
<td>OJ w/ calcium</td>
<td>200-250 mg/cup</td>
</tr>
<tr>
<td>Dark green leafy veggies</td>
<td>200 mg/cup</td>
</tr>
<tr>
<td>American cheese</td>
<td>170 mg/cup</td>
</tr>
</tbody>
</table>

Vitamin D

<table>
<thead>
<tr>
<th>Age Group (yr)</th>
<th>Suggested intake (IU/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-18</td>
<td>600</td>
</tr>
<tr>
<td>19-70</td>
<td>600</td>
</tr>
<tr>
<td>>70</td>
<td>800</td>
</tr>
<tr>
<td>Pregnant and lactating</td>
<td>800</td>
</tr>
</tbody>
</table>

- Fortified milk (8 oz) - 100 IU
- Fortified orange juice (8 oz) – 100 IU
- Fortified cereal (1 serving) - 40-80 IU
- Pickled herring (100 g) - 680 IU
- Canned salmon with bones (100 g) - 624 IU
- Mackerel (100 g) - 360 IU
- Canned sardines (100 g) - 272 IU
- Codfish (100 g) - 44 IU
- Swiss cheese (100 g) - 44 IU
- Raw shiitake mushrooms (100 g) - 76 IU
- Most multivitamins (1 tab) - 400 IU
VITAMIN D

- <20 Deficiency
- 20-30 Insufficient
- >30 Normal; ideal range is 40-50

VITAMIN D

- Recommended treatment for vitamin D–deficient patients 1–18 years of age is as:
 - 2000 IU/day of vitamin D2 or D3 for at least 6 weeks or
 - 50,000 IU of Vitamin D2 once weekly for at least 6 weeks

IRON

<table>
<thead>
<tr>
<th>Age Group (yr)</th>
<th>Suggested intake (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>7</td>
</tr>
<tr>
<td>4-8</td>
<td>10</td>
</tr>
<tr>
<td>9-13</td>
<td>8</td>
</tr>
<tr>
<td>14-18</td>
<td>15</td>
</tr>
<tr>
<td>18-50</td>
<td>18</td>
</tr>
<tr>
<td>>50</td>
<td>18</td>
</tr>
<tr>
<td>Lactation</td>
<td>9-10</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>27</td>
</tr>
</tbody>
</table>

IRON

<table>
<thead>
<tr>
<th>Age Group (yr)</th>
<th>Suggested intake (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-13</td>
<td>8</td>
</tr>
<tr>
<td>14-18</td>
<td>15</td>
</tr>
<tr>
<td>18-50</td>
<td>18</td>
</tr>
</tbody>
</table>

• The RDAs for vegetarians are 1.8 times higher than for people who eat meat. This is because heme iron from meat is more bioavailable than non-heme iron from plant-based foods, and meat, poultry, and seafood increase the absorption of non-heme iron.
IRON

<table>
<thead>
<tr>
<th>Food</th>
<th>mg/serving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast cereal</td>
<td>18</td>
</tr>
<tr>
<td>Oyster, eastern/White beans</td>
<td>8</td>
</tr>
<tr>
<td>Chocolate, dark</td>
<td>7</td>
</tr>
<tr>
<td>Beef liver</td>
<td>5</td>
</tr>
<tr>
<td>Lentils/Spinach/Tofu</td>
<td>3</td>
</tr>
<tr>
<td>Kidney bean, sardines,</td>
<td>2</td>
</tr>
</tbody>
</table>

IRON DEFICIENCY

- Menstruation
- The normal absorption rate of 1 milligram is stepped up to 1.5–3 milligrams per day—the female body’s natural response to blood loss.
- Heavy periods
- Prolong heavy periods
- Diet

IRON DEFICIENCY

- According to the U.S. Centers for Disease Control and Prevention (CDC),
 - “Data . . . suggest that only one fourth of adolescent girls and women of childbearing age (twelve to forty-nine years) meet the recommended dietary allowance for iron through diet
 - 11 percent of nonpregnant women aged sixteen to forty-nine years had iron deficiency
 - 3 to 5 percent also had iron-deficiency anemia.”

IRON DEFICIENCY

- True anemia is not as common in the female athlete as is nonanemic iron deficiency
- Iron supplementation in anemic athletes can increase aerobic power and improve performance
- Unclear whether iron supplementation in athletes who are iron deficient and not anemic has the same benefits
IRON

- True anemia is not as common in the female athlete as is nonanemic iron deficiency
- Iron supplementation in anemic athletes can increase aerobic power and improve performance
- Unclear whether iron supplementation in athletes who are iron deficient and not anemic has the same benefits

FEMALE ATHLETE TRIAD

- Disordered eating associated with reproductive dysfunction and osteopenia
- Metabolic fuel hypothesis-the athlete is challenged to balance energy intake with energy expenditure
- Negative fuel balance, the body will sustain essential physiological functions
FEMALE ATHLETE TRIAD

- Athletic amenorrhea, low-estrogen and amenorrhea state
- Traditionally we have attributed bone density loss to the loss of estrogen’s protective effect on bone
- Recent studies suggest negative energy balance may be the key factor leading to bone loss
- One study showed disordered eating was associated with low bone mineral density in athletes with/without menstrual irregularities

FEMALE ATHLETE TRIAD

- Osteopenia is defined as bone mineral density (BMD) that is 1.0 to 2.5 SD below the young adult reference mean as measured by dual-energy x-ray absorptiometry (DEXA)
- Osteoporosis is a BMD more than 2.5 SD below reference mean

FEMALE ATHLETE TRIAD

- Treatment is prevention through education
- Counseling on the benefits of ‘fueling’ one’s body for maximal sports performance
- ‘Enhancing performance through proper nutrition’

THANK YOU

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
STRESS FRACTURES

• Modest increased risk*
• Most common in track and field athletes (lower extremity)
• Athletes with menstrual irregularities have a higher incidence of stress fractures*
• Due to change in intensity or duration of activity

STRESS FRACTURES

• Treatment- 15 inch pneumatic leg brace (tibia) or tall pneumatic walker for tibia (ankle/midfoot), short walker for forefoot/toes
• Treatment- rest; remove from aggravating activity, usually 4-6 weeks
• Address causative factors: estrogen deficits, menstrual irregularities, nutritional concerns, shoe wear, training techniques (gait analysis)

ANTERIOR CRUCIATE LIGAMENT

• Disproportionate number of noncontact (NC) ACL injuries in females participating in sports involving pivoting, cutting, and changing directions of jumping
• 75 to 85% of NC ACL occur in this setting
• Soccer players 5x more likely to get ACL injuries (contact and NC)
• Basketball players 3x more likely (contact and NC)

ANTERIOR CRUCIATE LIGAMENT

• Multiple risk factors
• Environmental (shoe traction interface, bracing)
• Anatomic (Q angle, knee valgus, foot pronation)
• Hormonal (menstrual cycle)
ANTERIOR CRUCIATE LIGAMENT

• Multiple risk factors
 • Biomechanical
 • ACL has different mechanical properties in females (smaller)
 • Neuromuscular factors are different in sexes (quadriceps dominant)
 • Fatigue (male and female)
 • Imbalance in strength, flexibility and coordination

• Reconstruction does not prevent post-traumatic osteoarthritis
 • Reconstruction was significantly associated with less repeat surgery and less meniscal and chondral reinjury

ANTERIOR CRUCIATE LIGAMENT

• The goals of neuromuscular prevention programs are to decrease knee loading and to improve protective motions in the kinetic chain
 • Combine stretching, strengthening, aerobic exercise, agility drills, plyometrics and risk awareness
 • Sport specific drills to safely respond to unanticipated movements

PATELLOFEMORAL JOINT INJURIES

• Patellofemoral pain
 • Anatomic (malalignment, abnormal patellar height, shallow trochlear groove)
 • Dynamic (muscle imbalance or overuse)
 • Specific (chondral, plica, or neuroma)
PATELLOFEMORAL JOINT INJURIES

• Patellofemoral pain
• Evaluate flexibility (hamstrings, IT band, hips)
• Evaluate strength (VMO bulk, squat mechanics, single leg squat)
• Patella tracking (J sign, hypermobile)

THE FEMALE ATHLETE

• Shoulder instability
 • More laxity in shoulders but it does not translate to symptomatic multi-directional instability
 • Not related to hypermobile syndrome
THANK YOU

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.