Meniscal Injury & Repair
Matthew Murray, MD
Orthopaedic Sports Medicine
Arthroscopic Surgery
Ortho San Antonio

Epidemiology
- 60-70/100,000 per year
- Arthroscopic Meniscectomy
 - One of the most common orthopaedic procedures
 - 20% of all surgeries at some centers
- Male/Female ratio - 2:4:1
- Younger patients – acute traumatic incident
- Older patients – degenerative tears
- 1/3 of all tears associated with ACL injury
 - ACL Injury – lateral meniscus tears more frequent
 - Chronic ACL deficiency – medial meniscus injury more prevalent
- Tibial Plateau Fractures
 - Nearly 50% associated meniscal tears

Meniscus Anatomy
- Medial Meniscus
 - C-shaped
 - Posterior horn larger than anterior hom
 - Anchored to anterior and posterior bony attachments
 - Coronary Ligament
 - Remainder firmly attached to joint capsule
 - Deep MCL
 - Thickening of mid-portion of capsular attachment

- Lateral Meniscus
 - Semi-Circular configuration
 - Anchored to anterior and posterior bony attachments
 - Much closer than Med Meniscus
 - Anterior horn inserts adjacent to ACL
 - Meniscofemoral Ligaments
 - Humphrey – anterior
 - Posterior horn to femur
 - Wrisberg – posterior
 - Can be only posterior attachment in Wrisberg Variant discoid meniscus
 - Covers more tibial articular surface
 - Capsular attachments much less developed
 - Allows increased translation of lateral meniscus with ROM
Arthroscopic Anatomy

- Lateral
- Medial

Microstructure

- Type I collagen (90%)
 - Orientation mainly circumferential
 - Allows dispersion of compressive loads
 - Some radial fibers at surface and within mid-substance
 - Resist longitudinal tearing
 - Mesh orientation at surface
 - Distribution of shear stresses

Blood Supply

- Birth – entire meniscus is vascular
- 9 months – inner 1/3 is avascular
- Decreased vascularity until 10yo

- Adult Meniscus vascularity
 - PeriMeniscal Capillary Plexus
 - Superior and Inferior branches of Medial and Lateral Genicular Arteries
 - Lateral – outer 10-25%
 - Mostly avascular at Popliteal Hiatus
 - Medial – outer 10-30%

- Nerve Fibers
 - Concentrated in outer portion of meniscus
 - Dye et al. – conscious neurosensory mapping
 - Peripheral tissue – mild to moderate discomfort
 - Central tissue – little or no pain awareness
 - Mechanoreceptors in anterior and posterior horns
 - Proprioceptive feedback

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Meniscus Function

- 1897 Bland-Sutton
 - “the functionless remnants of the intra-articular leg muscles”

1. Load Sharing
2. Reducing Joint Contract Stresses
3. Passive Stabilization
4. Increasing Congruity/Contact Surface Area
5. Limiting Flexion/Extension Extremes
6. Proprioception

Meniscus Function

- Knee Extension
 - 50-70% of load transmitted through menisci

- Knee Flexion
 - 81% of load transmitted through menisci

- Total Medial Meniscectomy
 - 100% increase in contact stress
 - 50-70% reduction in femoral condyle contact area

- Total Lateral Meniscectomy
 - 200-300% increase in contact stress
 - 40-50% decrease in femoral condyle contact area

- ACL deficient Knee
 - Medial Meniscus is most important resistance to anterior tibial force
 - 50% increased load at full extension
 - 200% increased load at 60° flexion

History

- Twisting or Hyperflexion Injury
- Pain, swelling
- Locking, catching
- Loss of motion, extension block
- Degenerative Tears
 - Older patients
 - Chronic history of mild swelling and pain
 - Degenerative changes on Xrays

Physical Exam

- Inspection
 - Joint Effusion
 - Quadriceps Atrophy
 - Joint Line Swelling – parameniscal cyst

- Range of Motion
 - Mechanical block in extension
 - Loss of flexion

- Palpation
 - Medial and Lateral joint lines, patellofemoral joint

- Ligament Stability Testing

- Specialized Testing
 - McMurry’s Test
 - Apley Grind Test

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Diagnostic Studies

- **Xrays – IMPORTANT!**
 - Helpful for bony pathology and assessing degenerative changes
- **Series**
 - PA 45deg flexion weight bearing view of both knees
 - Lateral view
 - Merchant

Diagnostic Studies

- **MRI**
 - 95% accuracy of detecting tears
 - **BUT – must correlate clinically**
 - LaPrade – 5.6% tears in asymptomatic 18-39 year olds with normal physical exam
 - Boden – MRI on asymptomatic patients
 - < 45yo – 13% positive for meniscal tear
 - > 45yo – 36% positive for meniscal tear
 - Muellner – equal effectiveness of clinical evaluation compared with MRI

Classification of Meniscal Tears

Vertical Longitudinal Tear

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Bucket Handle Tear

Oblique Parrot Beak Tear

Horizontal Cleavage Tear

Radial Tear

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Complex Degenerative Tear

Surgical Indications

1. Symptoms affect
 - Activities of daily living
 - Work
 - Sports

2. Positive physical findings:
 - Joint line tenderness
 - Joint effusion
 - Limited Range of Motion
 - Provocative signs:
 - Pain with Squatting
 - Positive McMurry’s or Apley’s

3. Failure to respond to non-surgical management

4. Absence of other causes of knee pain identified on Xray or MRI

Total Meniscectomy

- Previously a commonly performed procedure
- Considered benign

1948 – Fairbank
- Joint space narrowing
- Osteophyte formation
- Squarring of femoral condyles

1987 – Jorgensen
- 147 athletes, followed at 5 and 14.5 years
- Knee complaints - 53%, 67%
- Knee Instability - 15%, 36%
- Radiographic degenerative changes 40%, 89%
- 46% gave up or reduced sporting activity

1992 – Wroble
- 39 adolescents, 21 year follow up
- Pain - 71%
- Stiffness - 68%
- Swelling - 67%
- Instability - 41%
- 90% with abnormal signs in affected compartment
- Overall 63% unsatisfactory results

Arthroscopic Partial Meniscectomy

- 80-90% satisfactory results compared with open total meniscectomy
- Less invasive
- Decreased hospitalization
- Shorter recovery time
Arthroscopic Partial Meniscectomy
- BUT – not a completely benign procedure
- Still a progression of degenerative changes compared to untreated knees
 - Does not necessarily correlate with subjective clinical results
- Worse results with:
 1. Concomitant Articular Cartilage Damage at time of arthroscopy
 2. Chronic ACL deficiency
 3. Mal-alignment

Meniscal Repair
- 1885: Annandale documented first successful meniscus repair
- Popularized in 1970s by DeHaven and Wirth as alternative to meniscectomy (DeHaven, Orthop Trans, 1981; Wirth, CORR, 1981)
- Direct open suturing of peripheral tears

Repair Techniques
- Open
- Inside-Out
- Outside-In
- All-Inside

Meniscal Repair
- Maintain Meniscal Functions
 - Load bearing
 - Shock absorption
 - Stress distribution
- Prevent degenerative changes
- Beneficial effects of meniscus preservation
 - Partial vs Total Meniscectomy
- So, repair should be even more beneficial……

Repair vs. Partial Meniscectomy
- Difficult to compare
 - Heterogeneity of tears
 - Associated injuries
 - ACL
 - Articular Cartilage
 - Patient Factors
 - Recreational vs. professional
 - Compliance with rehab
Repair vs Partial Meniscectomy

- Paxton – systematic review 2011
 - Repair has higher re-operation rate (23% vs 4%)
 - Higher in lateral meniscus
 - Lower combined with ACL reconstruction (14%)
 - Meniscal repair has not been definitively shown to reduce osteoarthritic changes when compared with partial meniscectomies
 - BUT – higher re-operation rate may be justified if there is a potential long term benefit of repair
 - There is some evidence that meniscal repair does lead to better radiologic and subjective outcomes over the long-term.

Meniscal Repair

- Indications
 1. Young, active patient
 2. Acute, symptomatic tears
 3. Complete vertical longitudinal tear >10mm
 4. Peripheral 10 – 30% (red-red and red-white zones)
 5. Unstable tear
 6. Stable knee
 - 30 – 70% success rate in unstable knees

Meniscal Repair

- Contraindications
 1. Degenerative tear in older patients
 2. White-white avascular tear
 3. Stable, incomplete tears
 4. Infectious, rheumatoid, collagen vascular disease
 5. Non-compliance with rehab
 - Growing Indications in young patients
 - Devices evolving
 - Techniques improving
 - Role of Biologics?
 - Sometimes an attempt to repair is better than the alternative

Meniscal Repair

- Techniques
 - ALL-INSIDE
 - Inside-out
 - Outside-in

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
All-Inside

Advantages
- All arthroscopic, no open incisions
- Easy access to posterior meniscus
- Shorter operating time
- Relatively quick, easy insertion
- Implants necessary
- 4 generations:
 - 1st – suture hooks
 - 2nd – sutures attached to a peripheral bar (T-fix) – required knot tying
 - 3rd – rigid bioabsorbable devices (arrows, darts)
 - 4th – suture devices, lower profile, allow tensioning (Fix-T-Fix, RapidLoc, Viper)

4th generation suture devices show comparable biomechanical strength to open and inside-out techniques

All-Inside Suture devices

Clinical Results
- Hass 2005
 - 80-90% clinical success at 2 years
 - 91% with ACLR
 - 80% isolated tears
- Barber 2008
 - 83% clinical success at 3 years

All-Inside

Complications
- Still risk of neurovascular damage
- Implant problems
- Technical problems
- Difficult to access anterior horn

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Meniscal Repair
- Improved results combined with ACLR > 90%
- Abundance of blood and growth factors in the joint
- Relatively limited patient activity
- Less aggressive initial rehabilitation
- Intrinsic condition of the meniscus at the time of repair
- Augmenting isolated meniscal repair?
 - Iatrogenic trauma to the surrounding synovium/fat pad
 - Microfracture in the notch/notchplasty
 - Growing interest in Biologics

Stem Cells
- Animal Studies – encouraging
 - Smaller defects
 - MSCs appear to localize and remain at the repair site
 - Larger defects
 - Require a scaffold loaded with MSCs
 - Must pass through FDA regulatory pathway
- Early clinical studies
 - Show potential for
 - Increased meniscal volume after meniscectomy
 - Decreased pain after meniscectomy
 - Increased healing rate after repair

This presentation is the intellectual property of the author.
Contact them for permission to reprint and/or distribute.
Rehabilitation

- Partial Meniscectomy
 - Accelerated rehab
 - Immediate WBAT, FROM
 - RTP 3-6 weeks

- Meniscal repair - controversial
 - Isolated repair
 - Protected weight bearing
 - 50% PWB for 2 weeks, then advance to WBAT
 - Brace locked in extension for 4 weeks
 - Restricted hyperflexion/squatting for 4 weeks

Rehabilitation

- With ACL Reconstruction
 - No significant alteration in rehab protocol
 - ROM and Weight bearing already limited by ACL in the early post-op period

 - WBAT Immediately
 - Weight bearing helps to compress circumferential fibers
 - Reduces meniscus
 - Stabilizes tear

- BUT --- NWB for radial tears – only exception
 - Circumferential fibers disrupted
 - Weight bearing distracts tear margins

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
conclusions

• A good history and physical exam with MRI can accurately diagnose meniscal injury
• Partial meniscectomy is one of the most commonly performed procedures today, but is not completely benign
• Meniscal Repair can preserve meniscal tissue and function when performed on the appropriate tear type and patient population
 • All-Inside has become the preferred method for repair
 • In combination with ACLR
 • A meniscal repair has a better chance to heal
 • Postoperative rehab protocol does not need to change with a repair
 • For isolated meniscal repairs
 • There is an increasing role for biologics
 • The repair needs to be protected postoperatively