The Rotator Cuff & Biceps Anchor

Matthew Murray, MD
Orthopaedic Sports Medicine
Arthroscopic Surgery
Ortho San Antonio

Anatomy
- Shoulder is really 4 articulations

Anatomy
- Dynamic Stabilizers
 - Rotator cuff
 - Scapulothoracic muscles
 - Long Head Biceps
- Static Stabilizers
 - Glenohumeral articulation
 - Labrum
 - Joint capsule (Glenohumeral Ligaments)

This presentation is the intellectual property of the author.
Contact them for permission to reprint and/or distribute.
History of Cuff Injury

- Typically repetitive microtrauma
- Repetitive nature of throwing
- High velocity/large forces
- Extremes of motion
- Year round participation
- Occasionally single event

History

- Pain
 - Posterior (impingement)
 - Anterior (biceps)
- Weakness
- Loss of velocity
- Subjective Instability
Anatomical Adaptations

- GIRD
 - 180° normal arc of motion
 - Shifted posteriorly in throwing arm
 - Due to osseous and soft tissue adaptations
 - More external rotation/Less internal rotation
 - Puts posterosuperior labrum and articular rotator cuff at risk for injury

Internal Impingement

- In maximum ER and Abduction
 - Posterosuperior labrum contacts articular cuff
 - Can occur in absence of symptoms
 - Recurrent microtrauma
 - Shoulder girdle muscle fatigue
 - Scapular dyskinesis
 - Over-throwing
 - High association with GIRD
 - Leads to SLAP & articular cuff tears

Exam of Throwing Athlete

- Visual: atrophy/asymmetry
- Winging/scapular dyskinesis

- Range of Motion
 - Supine
 - MUST compare to contralateral shoulder

Exam

- Strength
 - Empty can
 - Subscap Tests

- Stability
 - Apprehension
 - Multidirectional Instability
 - COMPARE!

- Special Tests
 - Impingement
 - Internal Impingement (Jobe)
 - Obrien’s Test
Nonoperative Treatment

- Typically 3-6 months
- Rest
 - Pitch count
 - Year round schedule
- Injections?

Nonoperative Management

- Rehabilitation
 - Phase I
 - Decrease inflammation
 - RICE
 - Restore ROM
 - Phase II
 - When ROM normalizes
 - Sleeper Stretch
 - Strengthening
 - Scapula/Cuff/Core

Nonoperative Management

- Rehabilitation
 - Phase III
 - No pain, minimal ROM deficits, adequate cuff/scapular strength
 - Intense strengthening
 - Plyometrics
 - Interval Throwing Program
 - Phase IV
 - Continue strengthening & neuromuscular training
 - Advanced position-specific throwing program
- 3-6 MONTHS!

MRI

- Andrews “if you want to find something wrong with a pitcher's shoulder, order an MRI”
- Evaluate rotator cuff and labrum
- Arthrogram
Surgery
Rotator Cuff Surgery in the Athlete

- Cuff Debridement

- Rotator Cuff Debridement < 50% thickness
 - 65-75% return to sport
 - But only 55% return to previous level

- Cuff Repair
Surgery

- Rotator Cuff Repair > 50% thickness
 - Most recreational athletes are able to return
 - 12% of athletes return after mini-open repair
 - Even with advanced arthroscopic techniques
 - Only 50% competitive athletes return to prior level of play
 - Worse prognosis for professional athletes
 - and pitchers

Biceps Anchor/Superior Labrum

Anatomy

- Superior portion of the labrum inserts directly into the biceps tendon distal to its insertion on the supraglenoid tubercle
- More meniscal in nature and mobile than inferior labrum

Vascular anatomy

- Similar to knee meniscus, vascularity is limited to peripheral margin
 - Limited vascularity of anterosuperior region
 - Renders superior labrum susceptible to injury
 - Impaired healing ability after repair

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Anatomy

- Considerable variability in superior labrum and LHB (about 10-15%)
- Sublabral recess
- Sublabral foramen
- Buford complex – thick MGHL and absence of AS labrum

Anatomy	Description	Incidence
Normal	Sclerotic labrum attached to anterosuperior glenoid rim	85.82%
Superior sublabral recess	Sulcus located under the biceps tendon	7.17%
Sublabral foramen	Outflow between anterosuperior labrum and the anterior glenoid	7.67%
Buford complex	Abundant labrum – thick, cord-like ligament	4.86%

Biomechanics

- Cadaveric biomechanical studies
 - LHB has stabilizing effects on the glenohumeral joint in all directions.
- In vivo studies have yet to establish this stabilizing effect.
- LHB does not serve as a humeral head depressor
- EMG studies show little or no activation when the elbow is immobilized.

Biceps tendon

- Pathology
 - Rupture
 - Subluxation/Instability
 - SLAP Lesions
 - Tendinitis
 - Most LHB pathology is secondary
 - Associated degenerative or traumatic injuries
- Definite pain generator
- Impingement
- Rotator cuff pathology
- Exact role in biomechanics not clearly understood

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
SLAP TEARS

- Injury mechanism
 - Direct Contact – Hyperangulation (Jobe)
 - Fall on outstretched upper extremity
 - Torsional – “Peel-Back” (Andrews, Burkhart)
 - Twisting of biceps
 - Repetitive pull on posterosuperior labrum

History & Exam

- Diagnosis
 - Difficult with nonspecific history and exam findings
 - High incidence of false-positive findings on imaging
 - Multiple co-existing injuries
 - 29% with partial thickness RCTs
 - 22% with Bankart lesions
- Exam
 - Assess ROM (GIRD)
 - Assess stability/hyperlaxity
 - Obrien’s Active Compression test

History and Exam

- Several Special Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PVP</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active apprehension test</td>
<td>47.06%</td>
<td>85.18%</td>
<td>58.89%</td>
<td>84.04%</td>
</tr>
<tr>
<td>Analog apprehension test</td>
<td>68.57%</td>
<td>51.57%</td>
<td>70.21%</td>
<td>51.57%</td>
</tr>
<tr>
<td>Analog apprehension test</td>
<td>26.28%</td>
<td>91.84%</td>
<td>81.56%</td>
<td>91.84%</td>
</tr>
<tr>
<td>Crank apprehension test</td>
<td>53.70%</td>
<td>70.00%</td>
<td>65.38%</td>
<td>70.00%</td>
</tr>
<tr>
<td>Anterior translation – internal rotation</td>
<td>79.13%</td>
<td>59.40%</td>
<td>64.00%</td>
<td>59.40%</td>
</tr>
<tr>
<td>Burkhart’s apprehension test</td>
<td>80.00%</td>
<td>66.67%</td>
<td>66.67%</td>
<td>66.67%</td>
</tr>
<tr>
<td>Forward flexion test</td>
<td>62.95%</td>
<td>70.59%</td>
<td>65.59%</td>
<td>70.59%</td>
</tr>
<tr>
<td>Painful arc test</td>
<td>62.95%</td>
<td>70.59%</td>
<td>65.59%</td>
<td>70.59%</td>
</tr>
</tbody>
</table>
• Imaging
 • Andrews "if you want to find something wrong with a pitchers shoulder, order an MRI"

Nonoperative Management
• Rest
• NSAIDS
• Cuff/Scapula Strengthening
• Injections

Operative Management
• SLAP Repair
 • High level of successful outcomes
 • BUT...Returning throwing athletes to pre-injury levels may be more difficult than previously reported
 • 44-69%

Biceps Tenodesis
• adsf

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Operative Management

- Mini-open Subpectoral Biceps Tenodesis

Arthroscopic Tenodesis

Operative Management

- SLAP repair versus Biceps Tenodesis for Type II
 Boileau 2009
 - SLAP repair
 - 20% return to previous level
 - Biceps Tenodesis
 - Higher satisfaction and functional scores compared to repair
 - 87% return to previous level of play

- Hawkins et al. 2007 - Tenotomy
 - No difference in elbow flexion or supination

International Trends

- France (Boileau) – Tenodesis
 - 87% RTP
 - Only 20% with SLAP repair

- Korea (Kim) –
 - Tenotomy with Rotator cuff repair far superior than SLAP repair

- U.S. - 2005-2009
 - SLAP repair 10% of all shoulder cases
 - Growing trend toward biceps tenodesis

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.
Postoperative Management

- SLAP repair
 - Sling 4 weeks
 - Immediate
 - Elbow and wrist rom
 - Scapula stabilizer exercise
 - 1 week - Controlled ROM in scapular plane
 - 6 weeks - Cuff strengthening
 - 12 weeks - AVOID extreme ABD & Ext Rot
 - Weight training
 - 16 weeks – throwing program for overhead athletes
 - 6 months – full release

Postoperative Management

- Biceps Tenodesis
 - Similar to SLAP repair, but accelerated
 - Sling for 2-3 weeks
 - **No isometric biceps for 4-6 weeks**
 - Cuff strengthening at 4 weeks
 - Active Shoulder flexion at 4 weeks
 - Throwing program at 12 weeks
 - Release at 4-6 months

Conclusions

- Adaptive Changes in the thrower’s shoulder leave it susceptible to injury
- Rotator Cuff Pathology
 - Rest and Therapy is 1st line management
 - After debridement or repair, return to play rates are about 50%
- SLAP Lesions
 - Less responsive to therapy
 - Biceps Tenodesis yields higher return to play and satisfaction rates than SLAP repair

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.