Anterior Shoulder Instability
Midseason Management
January 19, 2012

John W. Hinchey, MD
Dept of Orthopaedic Surgery
Shoulder & Elbow Service

CME Accreditation

- This live activity is designated for a maximum of 1 AMA PRA Category 1 Credit™.
- Physicians should claim only credit commensurate with the extent of their participation in the activity

Financial Disclosure

Dr. John Hinchey has no relevant financial relationships with commercial interests to disclose.

This presentation is the intellectual property of the author. Contact them at hinchey@uthscsa.edu for permission to reprint and/or distribute.
Acknowledgements

- Thanks to Daniel Grant, MD, for assistance with this presentation

Learning Objectives

- Review history of shoulder dislocations
- Understand the anatomy responsible for shoulder stability
- Understand the incidence & pathophysiology of shoulder dislocation & instability
- Review the physical exam & radiographs of shoulder dislocation
- Understand the treatment options & rational for midseason shoulder instability

History

- Shoulder Dislocations have been described and recorded from the beginning of recorded history.
- 3000 BC: Egyptians recorded and depicted a reduction maneuver as early as 1200 BC.
History

- 400 BC: Hippocrates described numerous reduction techniques.
- He also described the first surgical treatment: inserting a red-hot rod through the axilla to create scarring in the inferior shoulder.

History

- 1895: Wilhelm Roentgen developed medical x-ray.
- 1898: Francke - first series of shoulder dislocations radiographically characterized.

History

- 1939: Bankart described the problem with anterior shoulder dislocations as "detachment of the glenoid ligament from the anterior margin of the glenoid cavity."
- In 1940, two radiologists, Harold Hill and Maurice Sachs, published a review of the humeral head compression fractures.
The glenoid covers only 25-30% of the humeral head and is an inherently unstable construct.

5 degree superior tilt of the glenoid helps with inferior stability.

Variations from the 7 degree average retroversion has not clinically been shown to affect anterior stability.

- **Increases the contact area** with the humeral head articulat surface from 1/4 with the glenoid alone to 1/3 with the labrum.
- **Stability Ratio** (force to dislocate humerus against compressive forces pressing the humerus against the glenoid) decreases by 20% without the labrum.
- **Labrum assists with stability** especially inferiorly.

This presentation is the intellectual property of the author. Contact them at hinchey@uthscsa.edu for permission to reprint and/or distribute.
Ligament Anatomy - Origins

- **SGHL** - 3 variations in origin:
 - Biceps Tendon
 - Labrum
 - MGHL
- **MGHL** - Arises from the anterior Labrum or glenoid neck
- **IGHL**
 - Arises from glenoid between 2-4 o’clock anteriorly and 7-9 o’clock posteriorly.
 - Two Bands: *Anterior* and *Posterior*

Ligament Anatomy - Attachments

- **SGHL** - Attaches just superior to the lesser tuberosity
- **MGHL** - Attaches medial to the lesser tuberosity deep to the subscapularis tendon
- **IGHL** - Inserts on about a 90 degree arc just off the articular surface

Superior Glenohumeral Ligament

- **Assists as an inferior stabilizer**
- With the MGHL assists with anterior stability in an abducted and neutral position.

This presentation is the intellectual property of the author. Contact them at hinchey@uthscsa.edu for permission to reprint and/or distribute.
Middle Glenohumeral Ligament

- Helps provide anterior stability in lower degrees of abduction. (Also with the SGHL provides stability with the arm abducted and in neutral rotation)
- Stress on the ligament reduces with increased abduction & external rotation

Inferior Glenohumeral Ligament

- With abduction and external rotation of the arm, the Anterior Band becomes the primary static stabilizer of the shoulder.

Passive Muscle Stabilization

- **Subscapularis** provides primary anterior stability passively with the shoulder at 0 and 45 degrees of abduction.
- At 90 degrees of abduction the IGHL is the primary stabilizer.
Dynamic Muscle Stabilization

- **Rotator cuff musculature** provides important assistance to **dynamic anterior stability**.
- Creating the **compressive forces** on the humeral head.

Shoulder Dislocation Incidence

- Extremely Common Problem
- US Incidence: 23.9 per 100,000 person-years.
- **Males are 2.5 times more likely** to sustain a dislocation.
- **Nearly half** of dislocations occur in individuals between the **ages of 15-29 years**.
- Much higher in military and **athletic groups** of individuals.

Pathoanatomy of Anterior Dislocations

Bankart Lesion

- **Bankart Lesion**: Avulsion of the labrum from the glenoid.
- Typically occurs in the **anterior-inferior aspect of the glenoid** → insertion of the IGHL.
Bankart Lesion creates a reduction in the stability angle, which reduces the force needed to dislocate the shoulder. Studies report the incidence of a bankart lesion is >90% with first-time dislocation.

Studies report the incidence of a bankart lesion is >90% with first-time dislocation.

Incidence: 32-51% with initial dislocations increases with recurrent dislocations.

If H-S & Bankart are engaging lesions, increasing instability and failure if Bankart repaired & H-S not addressed.

Engagement: Hill-Sachs lesion contacts the anterior glenoid.

This presentation is the intellectual property of the author. Contact them at hinchey@uthscsa.edu for permission to reprint and/or distribute.
Nonoperative treatment has been the gold standard for treating primary anterior dislocations. Recently, Nonoperative management has been questioned as the best treatment.
Treatment - Immediate

- On the field –
 - If recognized, attempt a closed reduction
 - If unsuccessful, send to ER for sedation and closed reduction
- Place in sling once reduced and refer to team MD

Treatment Algorithm

[Diagram of treatment algorithm]

Nonoperative Treatment

- Initial period of **immobilization** → Sling
 - ER no different than IR slings
 - Liavaag 2011 JBJS
 - Patterson 2010
 - Hovelius 2008
Indications for Nonop Trial during Midseason

- **Injury Characteristics**
 - *INITIAL* d/l
 - Glenoid defect <25%
 - Humeral head defect <25%
 - Absc of fx or soft tissue injury requiring surgery

- **Player & Sport Specific Characteristics**
 - Desires return to sport
 - Non-overhead or throwing athlete
 - Noncontact sport
 - Can complete sport specific skills w/o instability

Nonsurgical Management Protocol

- Sling immobilization & Cryotherapy (week 0)
- Begin early motion (week 1)
 - Goal – pain-free symmetric motion
- Strengthening: Cuff and Scapular Stabilizers (week 2)
 - Goal – equal strength bilaterally
 - +/- bracing
 - Timeline: Return to sport approx 3-4 weeks (variable)

Nonoperative Treatment

- **Cuff & Scapular Stabilizers exercises:**
 - strengthen cuff ➔
 - create a balanced net force increasing stability of the shoulder
Nonoperative Treatment

- Relying on dynamic stability to help stabilize the shoulder and create a balanced compressive force that offsets the applied force.

Return to Play

- Criteria:
 - Symmetric pain-free ROM
 - Symmetric strength
 - Ability to perform sports specific skills
 - Absence of subjective & objective instability

Risks w/ Return to play

Main problem: Redislocation

- Up to 90% risk in young athletes in contact sports
- Risk for larger Hill-Sachs lesions and increased anterior glenoid bone loss with recurrent dislocations
- Risk for arthritis with recurrent dislocations
Various Studies for recurrent dislocations have been cited ranging from <25% to near 100%.

- Hovelius et al.
 - 229 primary anterior dislocations in pts 12-40 yrs
- 57% of shoulders re-dislocated at least once. (25 year f/u)

- Robinson et al.
 - 252 pts aged 15-35 yrs
- 59.5% repeat dislocation (average follow-up of 46.7 mos)

Indications for Midseason Surgical Management

- **Absolute**
 - Failed rehab trial
 - Inability to tolerate restrictions
 - Inability to perform sport specific tasks with instability
 - >50% RCT
 - Glenoid defect >25%
 - Humeral head defect >25%
 - Prox Hum fx
 - Irreducible d/l
 - Intersposed tissue or nonconcentric

- **Relative**
 - RECURRANT d/l
 - Overhead/throwing athlete
 - Contact sport
 - d/l near end of season
 - Age <20 y/o
 - Axillary nerve injury

Surgical Fixation - Tips

- Important to properly repair the Bankart lesion and capsular laxity.
- Rotator interval closure as needed.
- Compensate for engaging Hill-Sachs lesions, if needed.
- If there is significant glenoid bone loss or a large fracture, these need to be addressed.

MUST ADDRESS ALL PATHOLOGY!!!!
Surgical Points: Labral Repair Position

Labrum should be repaired to the glenoid rim, not the glenoid neck.

Reasons for Arthroscopic Repair Failure

- Younger Age
- Glenoid Bone Loss
- Large Hill-Sachs Lesion
- Hyperlaxity
- Use of fewer than 4 suture anchors
- High Activity Level/Contact Sports

(Note: Many of these are reasons for failure of open repairs as well.)

Recurrence after arthroscopic stabilization

- Randelli 2012 – systematic review
 - 3.4-35% rate of recurrence
 - Risk Factors for recurrence after repair
 - Epidemiological parameters
 - Age < 23
 - Male gender
 - Number of preoperative dislocations
 - Participation in competitive sports
Arthroscopic vs. Open Repair

- Open Repair has been the Gold Standard
- Arthroscopic repairs have been increasing in popularity and reported success in the literature
- Arthroscopic approaches:
 - Improved Shoulder ROM esp. external rotation
 - Historically higher risk for repeat dislocations
- **Recent Studies**
 - ~10% risk of re-dislocation
 - Comparable to open technique
 - High return to play to contact/throwing sports

Management of Failed Surgical Stabilization

- **Rerupture of the Bankart lesion was the most common finding**, creating instability in revision cases.
- Engaging Hill-Sachs lesions can contribute to instability.
- **Anterior Glenoid bone loss** must be addressed.
- **Hyperlaxity** must be addressed.
- Redislocation rates after revision stabilization procedures range from 8-27% in the literature.
- Arthroscopic Revisions have a higher failure rate.

Management of Anterior Glenoid Bone Loss

- Greater than 25% of anterior glenoid bone loss creates significant instability in the shoulder.
 - This amount of bone loss needs to be replaced.
 - Several options exist for grafting:
 - Laterjet, Iliac Crest Grafting, Osteocarticular allografts
 - Normal
 - Inverted Pear

This presentation is the intellectual property of the author. Contact them at hinchey@uthscsa.edu for permission to reprint and/or distribute.
Management of Anterior Glenoid Bone Loss -- Laterjet

- **Laterjet**: Transfer of the coracoid to the face of the glenoid to reconstitute the anterior glenoid.
- Can serve as an extra-articular bone graft.
- Non-anatomic repair

Management of Hill-Sachs Lesions

- Large (>25% of the humeral articular surface) and engaging Hill-Sachs lesions have been shown to increase the rate of dislocation after Bankart Repair
- Options: No treatment, Remplissage, rotational humeral osteotomies, Allograft placement, Arthroplasty

Management of Hill-Sachs Lesions -- Remplissage

- Involves tacking the posterior capsule & Infraspinatus down to defect
- Makes the lesion extraarticular
- Assoc w/ 10 deg loss of ER
- Has shown early promising results
 - High return to activity – up to 90%
 - Low recurrence rate

This presentation is the intellectual property of the author. Contact them at hinchey@uthscsa.edu for permission to reprint and/or distribute.
Management of Hill-Sachs Lesions–Allograft

- Hill-Sachs lesion is prepared
- Allograft from humeral head is prepared and contoured
- Fixed w/ screws countersunk below articular surface
- Concerns: allograft resorption, viability of cartilage

Conclusion

- Shoulder dislocations are common in the young athlete
- Trial of nonoperative therapy w/ return to play warranted after informed discussion w/ player & parents and criteria met
- Surgical management warranted if recurrent or failure of nonop therapy
- Surgical management is very technical and all pathology needs to be addressed for good outcome

References

- “Glenoid Bone Deficiency in Recurrent Anterior Shoulder Instability: Diagnosis and Management.” – Piasecki, D, et al. JAAOS 2009; 17: 482–493

This presentation is the intellectual property of the author. Contact them at hinchey@uthscsa.edu for permission to reprint and/or distribute.
THANK YOU!

GO MUSTANGS!