Ankle and Pantalar Arthrodesis

Patrick R. Burns, DPM, FACFAS
Clinical Assistant Professor
University of Pittsburgh School of Medicine
Department of Orthopaedic Surgery
Foot and Ankle Division
Residency Director
UPMC South Side Hospital
Podiatric Surgical Training Program

- History
- Indications
- Contraindications
- Goals
- Approaches
- Fixations techniques
- Complications
- Cases
History

- As early as 1878
 - Albert, Australian surgeon
- Many methods since the 1930s
- 1958 Charnley
 - First real compression device
- Treatment of choice for DJD ankle
 - Good long term results
- Predictable, durable

Indications

- Pain
- Arthritis
- Deformity
- Instability
- Charcot
- Spastic/paralytic
- Previous failed arthroplasty
Contraindications

- Infection?
- Age?
- Vascular insufficiency
- AVN?
- DJD adjacent joints
- Fusions of other leg

Goals

- Pain relief
- Correction of deformity
- Provide stability
 - For ambulation
 - For transfers
Goals during surgery

- Proper alignment
- Minimize height loss
- Minimize soft tissue damage
- Adequate joint preparation
- Achieve compression

Approaches

- Ankle
 - Lateral
 - Anterior
 - Posterior
 - Mini-open
 - Combined
 - Arthroscopic
Lateral approach

Posterior approach
Arthroscopic

- Less traumatic?
- Quicker fusion rates?
Arthroscopic ankle fusion

- Glick JM, Morgan CD, Myerson MS
 - Ankle arthrodesis using an arthroscopic method: long-term follow-up of 34 cases. Arthroscopy 1996
- 8 year follow up, multicenter
- 35 fusions, 97% fusion rate
- Difficult with deformities

Complications of AAA

- Neurovascular insult
 - During portal placement
 - During arthroscopy
- Infection
- RSD
- Fibular resection
- Tibial nerve injury
- Pseudoaneurysm
Complications of AAA

• In the knee
 – Sherman JBJS 1986
 – Major 4.8%
 – Minor 3.7%
• In the ankle
 – Ferkel, Guhl 518 cases Orthop Trans 1993
 – Overall 9.8%
 – Neurologic 49%

Complications of AAA

• Crosby LA, Yee TC, Formanek TS, et al.
 – Complications following arthroscopic ankle arthrodesis.
 – Foot Ankle Int 1996
 – 42 pts, 55% complication rate
Infection

- For all joints 0.1%
- For ankle alone 1.4-2%
 - Thin envelope
 - Passing instruments many times

Pantalar approaches

- Extensive lateral
- Combined
Combined approach

Fixation techniques

- Internal
 - Screws
 - IM rod
 - Plates
 - Combination
- External
- Combination
Ankle fixation

- 2 vs 3 screws
- Larger screws
Are larger, increased number of screws counter-productive?

Finite talar surface area

• 40 sawbone models
• 6.5, 7.3 screws
• 2 vs 3
• 9% vs 16% of total surface area not significant
• We do not know amount of surface area is required
Initial stability of ankle arthrodesis with three-screw fixation. A finite element analysis

Ana Alonso-Vázquez a, b, Henrik Lauge-Pedersen b, Lars Lidgren b, Mark Taylor c

a Biomechanics Science Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK
b Department of Orthopaedics, University Hospital, Lund, Sweden

- 2 vs 3 screws
- In situ vs resectional
- 3rd screw
 - Increased stability
 - Decreased micromotion

- 3rd screw either
 - Anterior
 - Posterior
 - Holt
 - Clin Orthop 1991
Blade plate
The Use of a 95° Blade Plate and a Posterior Approach to Achieve Tibiotalocalcaneal Arthrodesis

- 10 pts
- Many revisional
- No non-unions
- 3 complications

UPMC | University of Pittsburgh Medical Center

4th Annual International External Fixation Symposium
December 11-14, 2008
1991 Clin Orthop

Ankle ex-fix
Talar ring?

- 4th ring?
Full vs. 5/8
In the office

• Adjustable compression with 4th ring
4th Annual International External Fixation Symposium
December 11-14, 2008
humeral
Complications

- Infection

Complications

- Mal-union
Complications

- Non-union
 - 10-15%

Considerations

- Reason for fusion
- Previous surgery/hardware
- Previous incisions
- Tissue/bone handling
Positioning of fusion

- Neutral sagittal
- 5 degrees valgus
 - unlocks midtarsal joint
- Neutral to 15° of external rotation
 - match contralateral side
- Posteriorly displace talus under tibia
Controversy

- STJ DJD asymptomatic
 - Morrey JBJS, 1990
- Midtarsal joint can compensate 21 degrees
- Loss of 75% sagittal plane motion
- Can compensate with shoe modification

Biomechanical sequelae

- Effects on adjacent joints
- Ankle responsible for 70% of foot dorsiflexion
- TN joint
4th Annual International External Fixation Symposium
December 11-14, 2008
Arthrodesis
4th Annual International External Fixation Symposium
December 11-14, 2008
Comments