Diabetes in Athletes

Rudy R. Navarro, M.D., CAQSM
Department of Family & Community Medicine
UT Health Science Center at San Antonio

Goals & Objectives
- Understand the patterns of glucose utilization during exercise and sporting events
- Identify potential factors for complications in diabetic athletes
- Prevent, recognize, and treat hypoglycemia and hyperglycemia in diabetic athletes
- Prevent Delayed Onset Hypoglycemia

Diabetes Mellitus
- Most common metabolic disease in U.S. and South TX
- Characterized by hyperglycemia
- Can be caused by:
 - Problem with insulin secretion (DM Type 1)
 - Problem with insulin activity (DM Type 2)
Exercise and Diabetics

- Physical exercise is strongly recommended
- Multiple physiologic and psychologic benefits
- Major risk of exercise is hypoglycemia
 - Rarely hyperglycemia
- Athletes’ participate for competitiveness, achievement, financial reward
 - Usually more important than glucose control for some athletes

DM Type 1

- Most often diagnosed before age 30
 - Most often diagnosed in teenage years
- Loss of insulin secretion in the bloodstream
- Results in hyperglycemia, weight loss, ketoacidosis
 - Hypoglycemia can result from excess insulin

DM Type 2

- Most often diagnosed in adults 30-40 years and older
 - Increasing incidence in youth
- Loss of insulin activity at the muscles
 - Can ultimately cause loss of insulin secretion
- Hyperglycemia, weight loss, ketoacidosis
 - Hypoglycemia from excess insulin

This presentation is the intellectual property of the author.
Contact them for permission to reprint and/or distribution.
Hypoglycemia
• State of LOW serum glucose (< 70 mg/dL)
• Hunger, anxiety, sweating, tachycardia, tremor, palpitations, feeling of doom
• Neuroglycopenic symptoms include weakness, slow speech, poor vision, vertigo, odd behavior, confusion, paresthesias, stupor, seizures, LOC; from lack of cerebral glucose

Hyperglycemia
• Typically:
 • Under-dosing of meds
 • Excess carb intake prior to, during, or after activity
• Symptoms include excess thirst, fatigue, blurry vision, headache, nausea/vomiting, dry mouth, confusion
• Rarely an issue in athletics

Let’s Get Moving
Normal Response to Exercise

- Anaerobic exercise (short burst, near-max intensity):
 - Stimulates lactate utilization (and aerobic processes if prolonged) and not significant glucose use
- Aerobic exercise elicits glycogenolysis, lipolysis, & aerobic gluconeogenesis
 - INCREASE SERUM GLUCOSE
 - Increase of insulin, IGF, etc
 - DRIVE GLUCOSE INTO MUSCLES FOR USE
- Feedback mechanisms stabilize blood glucose

Diabetic Response to Exercise

- Aerobic exercise stimulates glucose production
- Impaired gluconeogenesis
 - Less glucose being made available
- Exogenous insulin combines with peripheral muscle use of serum glucose
 - Decrease in serum glucose
- Impaired feedback mechanisms to stimulate gluconeogenesis
 - HYPOglycemia

Hypoglycemia During Exercise

- Take 15 g of fast-acting carb every 15 - 30 minutes
 - 15 g of fast-acting carb = 1 Tbsp syrup, sugar, honey or 6-7 small hard/soft candies
- Re-check blood glucose every 15 - 30 minutes
 - Can also use complex carbohydrates (oats, grains, etc) if continued activity and likely recurring hypoglycemia

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribution.
Delayed Hypoglycemia

- Exercise causes increased peripheral muscle uptake of serum glucose
- Effect can last up to 48 hours
- Inadequate replacement of serum glucose stores during/post-exercise
 - Delayed hypoglycemic effect
 - Presents with seizures, cardiac, arrhythmias, unconsciousness, death
- Provide 1.5 g/kg (avg. 100 g of carb/70 kg person) within 30 minutes of completion; repeat 1-2 hours later
 - Monitor blood sugar closely during the night

Hypoglycemia Prevention

- Best treatment is prevention
- Decreased insulin/medication use prior to competition
 - If exercise is < 1 hour, 30% reduction
 - If 1 – 2 hours, 40% reduction
 - If > 2 hours, 50% reduction

Hyper-glycemia

- If patient already hyperglycemic, anaerobic exercise (short-burst, high-intensity) can worsen serum glucose
Hyperglycemia
• If pre-exercise glucose is > 250 mg/dL and urine ketones are present, DO NOT allow to play
 • Can worsen the HYPERglycemia
 • Best treatment is glucose-free hydration
• If pre-exercise glucose is > 250 mg/dL and NO urine ketones
 • Ok to play but monitor blood sugars closely

Tips
• Identify diabetic patients so that ALL staff are aware
• Avoid injection of insulin into area of exercising muscle (increases insulin usage)
• Plan meals accordingly before and after activity
• Set pre-determined time periods for glucose checks and sugar snacks
• Keep easily-digestable carbohydrate snacks/packs etc

Having a Plan
• Coordinate travel supplies and ensure adequate medications available
• Discuss athlete's attitudes, medication regimen, and limits regarding diabetic control
• Have a coordinated plan for hypoglycemia and hyperglycemia and discuss it with diabetic athletes before activities/competitions

This presentation is the intellectual property of the author.
Contact them for permission to reprint and/or distribution.
Thank You